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These notes may be downloaded and printed free of charge for personal and educational 
use only. Currently, the notes can be found at www.freewebs.com/mikecook The notes 
are loosely based on the current AQA A-level pure maths syllabus which can be found at 
the AQA website, www.aqa.org.uk  The material found in the notes should be useful for 
people studying for exams set by other UK exam boards. I cannot guarantee the accuracy 
of the information contained in these notes; use them at your own risk! These notes are 
not intended to serve as a self-study course, they should be used under the guidance of a 
teacher. If you have found these notes useful for yourself or your students, let me know! 
If you spot any mistakes or have any suggestions or comments, you can email me 
mike_cook_1982@yahoo.co.uk 
 
I hope that you find these notes useful. I wish you well in your studies. 
 
 
 
The picture on the cover of these notes shows a Möbius strip. For more information, see 
the end of these notes. 
 

Mike Cook, 2005 
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	����� � �� ��� � �� ��� � �� ��� � �� ������
����
����� 
�
A surd is a square root that cannot be expressed as a rational number (a quotient of real 
numbers), for example 2 1.414213562...=  is a surd 
 
+������������� 
 
There are three important rules to remember when working with surds, they are: 
 

� a b ab× =  
 

� 
a a

bb
=  

 
� ( )a c b c a b c± = ±  

 
$5	������@��

�

� 8 2 16 4× = =  
 

� 
24 24

3
88

= =  

 
� ( )9 5 4 5 9 4 5 5 5− = − =  

 
 
Recall the first rule of surds above. We can use this rule in two ways, to multiply surds, 
but also to factorise surds. Factorising surds can lead to simplifications.  
 
$5	������@'� 27 9 3 9 3 3 3= × = × = �

�
When faced with a surd, look to see whether the surd can be factorised using square 
numbers (square numbers are 4, 9, 16, 25, 36, 49, 64, …), as we did in example 1.2.  
 
�

"��
��@� Simplify the following as much as 
possible using some or all of the three rules 
stated above: 

  
( ) ( )20 3 3 9 16 9 9

8 2

× × − ×

×
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���
��������	������6��	�+�	��0��6���

�
Any real number, like 3, 7, 49 etc. can be expressed as a root by remembering that 

2a a= . For example, we can write 25 5 25= = . This means that we can multiply a 
surd by a real number, first by expressing the real number as a root, then using the first 
rule of surds. 

$5	������@�� 512 15 2 2 256 15 2 16 2 15 2 2− = × − = − =  

 
+	
���	�������
���#������	
���
 
When dealing with expressions where surds appear in the denominator, it is usual to 
eliminate all surds in the denominator where possible. 
 

For example, given 
2
3

, we would eliminate the 3  term in the denominator by 

multiplying numerator and denominator by 3 , i.e. 
2 2 3 2 3

33 3 3
×= =
×

. Of course, we 

now have a surd appearing in the numerator, but it is standard practice to favour surds in 
the numerator over surds in the denominator. This is an advantage, for example, if we 
wish to add various fractions involving surds. 
 

To rationalise the denominator of 
2

2 5+
, we multiply numerator and denominator by 

2 5− .  This technique is an illustration of the factorisation of a difference of squares. 
 
Recall: ( )( ) 2 2a b a b a b+ − = − . 
 
Returning to our example, we have: 
 

"��
��@'�Using any of the results so far, simplify the following as much as possible: 
 

75 2 3+  

Do not get confused and write an incorrect statement, like 5 5 25× =  
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( )
( )( )

2 2 52 4 2 5
2 5 4

4 52 5 2 5 2 5

− −= = = −
−+ + −

 

In general, to rationalise the denominator of ( )
1

a b c d±
, we multiply numerator and 

denominator by ( )a b c d� . 

�
$5	������@* Rationalise the denominator in the following expression: 
 
2 3 2
3 2 3

+
+

. 

 
In this case, we can rationalise the denominator by multiplying numerator and 
denominator by 3 2 3− . Let’s do this: 
 

( )( )
( )( )
2 3 2 3 2 32 3 2

3 2 3 3 2 3 3 2 3

+ −+ =
+ + −

 

 

                 
6 6 2 9 3 4 6

9 4 9
− + −=

−
 

 

                
6 6 2 3 3 2 6

9 2 3
− × + × −=

× −
 

 

               
5 6 6 6

15
− +=  

 

               
6

3
=  

 
����������$5	������
�
The general process for simplifying surds is to rationalise the denominator where 
appropriate, write the expression involving as few roots as possible and write the roots as 
small as possible, for example, we can write 112  as 4 7  (Check!). Keep at the front of 
your mind all of the rules and methods we have covered. 
 
�

�

"��
��@� Simplify the following 
expression as much as possible: 
3 24
2 6
+
+

. (Start by rationalising the 

denominator).  
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b) 3 5 3 5 6
2 62 6

×=
×

 

 

              
3 30

12
=  

 

              
30
4

=  

$5	������@��Simplify each of the following: 
 

   a) 5 20 2 45+   b) 3 5
2 6

 

 
a) 5 20 2 45 5 4 5 2 5 9+ = × + ×  
 
                           5 2 5 2 3 5= × + ×  
 
                          10 5 6 5= +  
 
                          16 5=  
�

$5	������@/ Express 
2 1
2 1

+
−

 in the form 2a b+  where a and b are integers. 

 
The obvious thing to do here is to rationalise the denominator: 
 

( )( )
( )( )

2 1 2 12 1
2 1 2 1 2 1

+ ++ =
− − +

 

 

            
2 2 2 1

2 1
+ + +=

−
 

 
            3 2 2= +   So we see that 2a =  and 3b = . 
�
��	��	
������
�����	���
�������	����

�
)�
�����
����	�����%������
 
We are already familiar with the graphs of quadratic functions of the form 

2( )f x ax bx c= + + . We can also factorise quadratic equations of this form where 
possible to find the roots (zeros) or use the quadratic formula for finding the roots when 
factorisation is not possible. 
 
As a reminder, let us find the roots, and sketch, the following function: 

2( ) 8 14 3f x x x= − + . 
 
We know that the shape of this graph is a parabola (bucket shape). The parabola is the 
‘right war round’ because the 2x  term is positive. Where does the parabola cross the x-
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axis? We call the point(s) where the parabola crosses the x-axis the roots (or zeros) of the 
quadratic. These correspond the value(s) of x satisfying 28 14 3 0x x− + = .  
 
In this case we can factorise as follows: 
 

28 14 3 0x x− + =  
 

( )( )  4 1 2 3 0x x� − − =  
 

   4 1 0   or   2 3 0x x� − = − =  
 

1 3
      or   

4 2
x x� = =  

 
 
So the roots of the quadratic (the points where the quadratic graph crosses the x-axis) are 

at 
1
4

x =  and 
3
2

x = , as shown in fig.1.1. 

 

The minimum of this graph occurs at 
7
8

x = ; we will learn how to calculate this in a later 

chapter. The point on the graph at where the minimum (or maximum in other cases) 
occurs is called the vertex. Notice that the graph has a line of symmetry  - a vertical line 
that cuts through the vertex. Of course, this property is seen in all quadratic parabolas. 
This is illustrated in fig1. 2. on the simplest quadratic parabola - 2( )f x x= . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
�

�

fig. 1.1  

fig.1 2 
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���
����0�
	
��� 
 
Consider the function 2( )f x x= . What is the value of ( )f x  when 3x = ? The answer is, 
of course, 9. We write (3) 9f =  to say ‘the value of the function f when 3x =  is 9’.  
�
	�
����	
���������	��	
�����������	�� 
 
When asked to find the roots of a quadratic polynomial, or to factorise a quadratic 
polynomial, try the following methods: 
 
First, write the quadratic in the form 2 0ax bx c+ + = . For example, write 22 7x =  in the 
form 22 7 0x − = . It may be necessary to do some manipulation first, for example 
clearing fractions where possible. 
 
 

i. If there is only one term involving x – the equation can be solved by algebraic 

manipulation. For example, 2
2

147 147
3       49      49 7

3
x x

x
= � = = � = ± = ±  

 
ii. If there is one term involving 2x  and one term involving x and no constant terms 

– then factorise out an x. For example, 
2 2 21 1 1

3       2 0      2 0
2 2 2

x x x x x x x� �= + � + = � + =� �
� �

 

 

  
1 1

   0  or  2 0      0  or  
2 4

x x x x� = + = � = = −  

 
iii. If the quadratic contains 2x  and x and constant terms, try to factorise into two 

linear factors. For example 
( )( )2 26 12 6       6 6 12 0      2 4 3 3 0x x x x x x= − � + − = � + − =  

 
                                        2 4 0   or   3 3 0      2  or  1x x x x� + = − = � = − =  

 
iv. If the quadratic does not factorise, use the quadratic formula. If 2 0ax bx c+ + = , 

then 
2 4

2
b b ac

x
a

− ± −= .  For example 23 5 7 0x x+ − = , then 

( )25 5 4 3 7 5 109
2 3 6

x
− ± − × × − − ±= =

×
 this is approximately equal to  0.906x =  

or 2.573x = − . 
 
$5	������@! Find the (real) solutions of the following: 
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12

6 6x
x

+ =  

 
This expression is a quadratic polynomial in disguise! First we need to do a bit of 
manipulation to get this into the standard form. Multiplying throughout by x to clear the 
fraction gives: 
 2 26 6 12      6 6 12 0x x x x+ = � + − =  
 
Now, this is exactly the same polynomial as before, we have not changed it in any way, 
just written it slightly differently. We are asked to find the solutions, i.e. find the values 
of x such that when we substitute in those values, we get a true statement. This is just a 
case of factorising and reading off the roots in the usual way. We factorise to get: 
 
 ( )( )2 4 3 3 0      2 4 0  or  3 3 0x x x x+ − = � + = − =  
 
 i.e. 2   or   1x x= − = . 
 
$5	������@� Find the (real) solutions of the following: 
 
 4 3 22 6 0x x x+ − =  
 
Now this may not look like a quadratic equation, but we can make it look like a quadratic 
equation by factoring out one of the x terms. Then we can factorise completely. Doing 
this gives: 
 
 4 3 22 6 0   x x x+ − = �    ( ) ( ) ( )2 22 6 0      2 3 2x x x x x x+ − = � − +   

 

so we have that 0x =  or  
3

2   or   
2

x x= − = . 

�
$5	������@2 Find the (real) solutions of the following: 
 
 4 210 24 0m m− + =  
 
Here, factorising out 2x  will not work so well, because of the constant term. We can, 
however, make this look like a quadratic equation by setting 2a m= . Making this simple 
substitution gives: 
 
 2 10 24 0a a− + = . 
 
We can factorise this easily as ( )( )4 6 0a a− − =  so that 4   or   6a a= = . But, remember 

that 2a m=  - the original question was in terms or m, not a, so we must give our answer 
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in terms of m. So, 2 24   or  6      2   or   6m m m m= = � = ± = ± . (Don’t forget ± ). 
These four roots are shown in fig.1.3 
 

       
  
 
 
 
 
 
 
 
 

 
�

������
����
������	���
�

Consider the function 2( ) 6 9f x x x= − + . This can be factorised as 

( )( ) ( )2
( ) 3 3 3f x x x x= − − = − , i.e. it is a perfect square.  

 
What about the function 2( ) 6 10f x x x= − +  can this be factorised as a perfect square? 

The answer is, of course, no. But we can write it as ( )2
( ) 3 1f x x= − + .  

 
What about 2( ) 4 2g x x x= − + . Can we write this in the form ( )( )g x x a b= + + ? 

Yes, we can: ( )2
( ) 2 2g x x= − −  ( 2,  2a b= − = − ). Can we write any quadratic 

polynomial of the form 2( )h x x bx c= + +  in the form ( )2
( )h x x A B= + + ? The answer, 

once again, is yes. In general, this technique is called completing the square. Before we 
construct a general method, let us first think carefully about what we are doing when we 
expand an expression like ( )2

x a+ .  
 
 ( )2 2 22x a x ax a+ = + +  
 

• The first term (x) gets squared 
• The two terms (x and a) get multiplied together and doubled 
• The last term (a) gets squared 

 
Completing the square is essentially the reverse of this process.  
 
METHOD 
To complete the square of 2x bx c+ + , we write, 
 

4 2( ) 10 24f x m m= − +

fig. 1.3 

"��
��@� Solve each of the following for x: 
 

a) 4
2 7x

x
+ =   b) 2 0x x− =    

c) 6
7

2 2
x

x
+ =

−
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 ( )22x bx c x A B+ + = + + . 
 

To find A: Half the coefficient of x, i.e. 
1
2

A b=  

 
To find B: expand the bracket and see what needs to be added or subtracted to get 
equality. 
 

We have established that 
1
2

A b= , so we have 
2

2 1
2

x bx c x b B� �+ + = + +� �
� �

. 

 

Now 
2

2 21 1
2 4

x b x bx b� �+ = + +� �
� �

, So we have 

 
2 2 21

4
x bx c x bx b B+ + = + + + 21

             
4

B c b� = −  

 
 
 
 
 
It is better to remember the method, rather than memorise the result.  
 
$5	������@�( Express 2 5 7x x+ −  in the form ( )2

x A B+ +  and hence solve the 

equation 2 5 7 0x x+ − = . 
 

We complete the square, 
2 2

2 5 25 5 53
5 7 7

2 4 2 4
x x x x� � � �+ − = + − − = + −� � � �

� � � �
. 

 

Now, 2 5 7 0x x+ − =
2

5 53
          0

2 4
x� �

� + − =� �
� �

 

 

                                        
5 53 53 5

               
2 4 4 2

x x� + = ± � = ± −  

 
                                        or 1.14   or   6.14x x= = − . 
 
So far, we have only completed the square for expressions of the form 2x bx c+ + . What 
about expressions of the form 2ax bx c+ + ? The solution to this problem is to factor out 
the a first. For example, if we want to complete the square for 23 7 8p p− + , we first 

SUMMARY: ( )22x bx c x A B+ + = + +  where 
1
2

A b=  and 21
4

B c b= − . 
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factor out the 3 to get 2 7 8
3

3 3
p p� 	− +
 �� 

. Now we complete the square of 2 7 8
3 3

p p− +  in 

the usual way, but remember that everything is multiplied by 3. 
 
$5	������@�� Express 22 3 1x x− +  in the form ( )2

A x B C+ + .  
 

2 2 3 1
2 3 1 2

2 2
x x x x� 	− + = − +
 �� 

 

 

                   
23 9 1

2
4 16 2

x
� 	� �= − − +
 �� �
� �
 �� 

 

 

                   
23 1

2
4 16

x
� 	� �= − −
 �� �
� �
 �� 

 

 

                   
2

3 1
2

4 8
x� �= − −� �
� �

    

 

                   i.e. 
3 1

2,   ,   
4 8

A B C= = − = − . 

 
 
 
 
 
 
�
�������� 	�������	����
��� 
 
Why is completing the square useful? As we have seen in example 10, we can solve a 
quadratic equation by completing the square, although in practice quadratic equations are 
not normally solved in this way. However, a generalisation of this method is used to 
prove the quadratic equation formula (see later). 
 
We can gain a useful piece of information by completing the square of a quadratic 
equation, that is we can say what the minimum value of the quadratic is. Once we have 
expressed a quadratic in the form ( )2

A x B C+ + , since ( )2
0x B+ ≥  (anything squared is 

never negative, i.e. always greater than or equal to zero), the minimum value must be C. 
The minimum (or maximum) point of a quadratic function is called the turning point of 
the function. 
 

��������
Be careful with the brackets here, 
make sure everything gets multiplied 
by the 2. 

"��
��@* Express 23 10x x− +  in the form ( )2
A x B C+ +  and hence show 

that  the equation 23 10 0x x− + =  has no real root. 
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2 16 63y x x= + +  

Turning point 

fig. 1.4 

$5	������@�' Find the turning point ( ),x y  on the function 2 16 63y x x= + + . 
 
This function is a parabola (right way round), so the turning point is a minimum turning 
point. We can find this by completing the square: 
 
 ( )22 16 63 8 1x x x+ + = + −  
 
Since the minimum value of ( )2

8x +  is 0, the minimum value of 2 16 63y x x= + +  occurs 
at  1y = − . 
We find the x value at this point by substituting 1y = −  into the equation and solving for 
x: 
  

( )22 216 63 1      16 64 0      8 0      8x x x x x x+ + = − � + + = � + = � = − . 
 
So the minimum point occurs at ( )8, 1− − , as shown in fig.1. 4. 
 
 
 
�

�
�

�
�

�
�

�

�
�

�
�

"�����	��	
��������	�

Recall the quadratic formula: If 2 0ax bx c+ + = , then 
2 4

2
b b ac

x
a

− ± −= . This can be 

proved by completing the square of 2ax bx c+ +  and using it to solve 2 0ax bx c+ + = . 
This is left as an exercise.  
�

"���#��������	�
����	���	��	
���$��	
��� 
 
Look back at example 1.7. Here we considered a quadratic equation which had two 
distinct (different) roots, namely 2   or   1x x= − = .  
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Look back at example 12. Here we came across the quadratic 2 16 64 0x x+ + = , which 
we found had only one root (or sometimes we say two repeated roots). 
 
Now consider the quadratic 2 6 0x x+ + = . This will not factorise. If we try to use the 
quadratic formula we get: 
 

1 1 18 1 23
2 2

x
− ± − − ± −= = . This presents us with a problem – we do not know how to 

find the square root of a negative number. So we say that this quadratic has no (real) 
roots. 
 
In summary, any quadratic equation 2 0ax bx c+ + =  has either: two different roots, one 
root (two repeated roots) or no (real) roots.  
 
Given any quadratic equation 2 0ax bx c+ + = , can we tell which category it will fall into 
without going through the whole process of solving the equation? 

Recall, once again the quadratic formula: If 2 0ax bx c+ + = , then 
2 4

2
b b ac

x
a

− ± −= . 

It turns out that the information about whether the quadratic has two, one or no root(s) is 
contained in the term 2 4b ac− . This term is called the discriminant of the quadratic 
equation.  
 
In the case where the quadratic has two distinct roots, the equation cuts the x-axis in two 
different places. In the case where the quadratic has one root, the equation is tangent to 
the x-axis at one point (just touches but does not cross). In the case where the quadratic 
has no (real) roots, the equation never crosses the x-axis. 
 

• If 2 4 0b ac− >  then the equation has two distinct roots (fig. 1.5) 
 

• If 2 4 0b ac− =  then the equation has one root (two repeated roots)  (fig.1. 6) 
 

• If 2 4 0b ac− <  then the equation has no (real) roots (fig.1. 7) 
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2 4 0b ac− >  - crosses x-axis 
twice 

2 4 0b ac− =  - tangent to x-
axis  

2 4 0b ac− <  - does not cross  
x-axis  

 

$5	������@���Does the equation 21
4 8 0

2
x x+ + =  have any roots? If so, does it 

have two repeated roots or two distinct roots? Which of fig. 1.5, 1.6, 1.7 could be a plot 

of 21
4 8

2
y x x= + + ? 

 

We need to calculate 2 4b ac− . 2 2 1
4 4 4 8 0

2
b ac− = − × × = , so 21

4 8 0
2

x x+ + =  has two 

repeated roots. 21
4 8

2
y x x= + +  is tangent to the x-axis at one point, so fig. 1.6 could be a 

plot of 21
4 8

2
y x x= + + . 

 
�

�
�

�
�

�
���%���&�
����� 
 
��	��	
�������
���� 
 
If we are asked to sketch a quadratic equation, there are four basic pieces of information 
we need to know: ‘which way round’ the quadratic equation is, depending on whether the 

2x  term is positive or negative, where the graph crosses the x-axis (if at all), where the 
minimum (or maximum) value occurs and where the graph cuts the y-axis. To sketch a 
given quadratic, we first find the roots to see where it will cross the x-axis (if at all). Then 
we express the quadratic in the form ( )2

A x B C+ + , so that we can find the coordinates 
of the minimum value. To find where the graph crosses the y-axis, se simply set 0x =  
and calculate the value of y. 
�

fig. 1.5 fig. 1.6 fig. 1.7 

"��
��@� a) Does 2 5 6 0p p− + =  have two distinct, two repeated or no (real) roots? 
                b) Given that 2 0ax bx c+ + =  has two repeated roots, does 22 4 0ax bx c− + =                                 
                     have two distinct, two repeated or no (real) roots?   
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fig. 1.8 

"��
��@/ Sketch the function 
2 4 6y x x= − + . 

 

22 4 6y x x= + −

 

$5	������@�* Sketch the function 22 4 6y x x= + − . 
 
To find the roots, we factorise 22 4 6 0x x+ − =  to get: 
( )( )2 6 1 0      3   or   1x x x x+ − = � = − = . 
 
So the 22 4 6y x x= + −  cuts the x-axis at 3x = −  and 1x = . Next we find the minimum 

point of the graph. We can write 22 4 6 0x x+ − =  as ( )2
2 1 8 0x + − =  (check). Therefore, 

the minimum value of 22 4 6y x x= + −  occurs when 8y = − . To find the x coordinate of 
the minimum point, substitute 8y = −  into 22 4 6y x x= + −  to get: 
 

( ) ( )22 4 2 0      2 2 1 0      1x x x x x+ + = � + + = � = − . 
 
So the minimum point is at ( ) ( ), 1, 8x y = − − . 
 
To find where the graph crosses the y-axis, we set 0x = , to get 6y = − . 
 
 Recall also that there is a line of symmetry parallel to the y-axis that cuts through the 
minimum point. 
 
We now have all the information we need to sketch a plot. The plot is shown in fig.1. 8. 
 

�����
	������$��	
���� 
 
We are already familiar with solving two linear simultaneous equations in two unknowns. 
Recall that there are two methods of solving simultaneous linear equations: by 
elimination or by substitution. The elimination method relies on us being able to rewrite 
the equations so that after we add the two equation or subtract the two equations, one of 
the unknowns is eliminated. We can then solve the problem.  
The substitution method relies on us being able to rearrange one of the equations to make 
one of the unknowns the subject. We then substitute for this unknown into the other 
equation and solve. Let us remind ourselves with some examples. 
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$5	������@�� Solve the following simultaneous equations: 
 
2 6 16x y+ =  …………….(1) 
 

18 49x y− = −  …………….(2) 
 
Multiplying (2) by 2 and subtracting the two equations gives: 
 

114 19
42 114      2.714

42 7
y y= � = = =  We can now substitute for y in either (1) or 

(2).  
 
Substituting for y in (1) gives: 
 

19 114 1 114
2 6 16      2 16       16  

7 7 2 7

   0.1429

x x x

x

� �+ × = � = − � = −� �
� �

� = −
 

 
$5	������@�/�Solve the following simultaneous equations: 
 

2 2 13x y+ =                 …………….(1) 
 
                …………….(2) 

 
From (2) we have: 
 

7 2y x= −                    …………….(3) 
 
Now we can substitute this into (1) and solve the resulting equation for x. 
 
Substituting into (1) gives: 
 

( )22 2 2 27 2 13      49 28 4 13      5 28 36 0x x x x x x x+ − = � + − + = � − + =  
 

We can factorise this quadratic as: ( )( ) 18
5 18 2 0         or   2

5
x x x x− − = � = =  

Now we substitute for x in (3): 
 

If 
18
5

x = , then 
18 1

7 2
5 5

y = − × = −  

 
If 2x = , then 7 2 2 3y = − × =  

Here, we can use the elimination method. We 
can eliminate either x or y. We will choose to 
eliminate x. 

2 7x y+ =

The best way to solve these is to rearrange (2) in 
terms of either x or y and then substitute into (1). 
We will rearrange (2) for y. 

Substitute these answers back into (1) and (2) to 
check that both pairs are valid solutions. 
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2 2 13x y+ =  

( ) ( ), 2,3x y =  

( ) 18 1
, ,

5 5
x y � �= −� �

� �

 

y 

x 

fig. 1.9 

 
What do these results correspond to graphically? We have solved simultaneously 

2 2 13x y+ =  and 2 7x y+ = . The points ( ) 18 1
, ,

5 5
x y � �= −� �

� �
 and ( ) ( ), 2,3x y =  correspond 

to points where the two graphs are simultaneously equal, i.e. where they have the same 
value, i.e. where they cross. This is illustrated in fig. 1.9. 
 
 
 
 
 
�

�
�

�
�

�
�

�

�
�

�
�

�

�
�
 
 
 
 
 
 
 
 
 
 

�

2 7x y+ =  

"��
��@� Solve the simultaneous 

equations 2 22 32x xy y− + =  and 
5

y
x

= −  

"��
��@!�Solve the following 
simultaneous equations. 
Illustrate the results 
graphically.  
 

2 2 2y x x= − +  
 

4 7y x= − . 
 

"��
��@2 fig. 1.10 shows plots for the 
functions 2( ) 2 8f x x x= − + +  and 

2( ) 3 4g x x x= − − . Find the coordinates of 
the two points where the graphs of ( )f x  
and ( )g x  cross.�
 

fig. 1.10 

2( ) 2 8f x x x= − + +

2( ) 3 4g x x x= − −

2( ) 2 8f x x x= − + +
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)����	��
��� 
 
,���	��)����	��
��� 
 
An inequality is an expression similar to an equation, but rather than having an equals 
sign, we have an inequality sign. An example of an inequality is, 2 3 11x + ≥ . We can 
solve and manipulate inequalities in a similar way as we do with equations. We can add 
an amount to both sides, divide both sides by an equal amount or multiply both sides by 
an equal amount, as we do with equations. However, there is one golden rule we must 
always remember when working with inequalities: 
 
 
 
 
 
This can be easily illustrated. Consider the inequality, 6 8< . This is a true statement. If 
we multiply both sides by 1−  we get, 6 8− < − , which is false. Because we have 
multiplied both sides by a negative number, we must reverse the inequality sign to get 

6 8− > − , which is true. If we divide both sides by 2− , for example, we must again 
reverse the inequality sign to get a true statement (check). So, while we can multiply and 
divide both sides of an equation by a negative number without worry, when multiplying 
or dividing both sides of an inequality by a negative number, we must reverse the 
inequality sign.  
 
$5	������@�! Simplify the inequality 2 3 11x + ≥ . 
 
In this example, we work just as we would if this were an equation. First subtract 3 from 
both sides: 
 
2 8x ≥ .  Then divide both sides by 2: 
 

4x ≥ .  So we have discovered that 2 3 11          4x x+ ≥ ⇔ ≥ , i.e. if we substitute any 
number greater than or equal to 4 for x in 2 3 11x + ≥ , we will get a true statement. 
 

$5	������@�� Simplify the inequality 
1

3 4
3

x x< − . 

 
Again, this is very similar to how we solve linear equations. First, multiply both sides by 

3 to get 9 12x x< − . Now subtract 9x  from both sides to get 
3

8 12    
2

x x− < − � > . 

 
$5	������@�2�Find the set of integers which satisfy simultaneously both of: 
 

( )6 3 7 1x x− ≤ − ………………(1) 
 

If we multiply or divide both sides of an inequality by a negative number, then we must 
reverse the inequality sign. 
 
��������
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2 3 9x x> −  ……………....(2) 
 
We start by simplifying each of (1) and (2) separately as normal. Simplifying (1) leads to: 
 
4    or   4x x≤ ≥  (check). Simplifying (2) leads to: 
 
9    or   9x x> < . 
 
Now we are asked for integers that simultaneously satisfy both (1) and (2). The integers 
that satisfy (1) and (2) separately are illustrated in fig1. 11. 
 
 
 
 
 
 
 
 
 
 
 
So the integers which satisfy both inequalities simultaneously are 4, 5, 6, 7, 8. 
 
 
 
 
 
 
 
 
 
�
�

��	��	
���)����	��
��� 
 
When solving quadratic inequalities, it is always advisable to make a sketch to see what 
is going on. Let us consider an example. 
 
$5	������@'( Solve the inequality 28 24 10 0x x+ + < . 
 
The way to solve this is to simply sketch the graph of 28 24 10y x x= + +  and read off the 
values. We can factorise 28 24 10x x+ +  as ( )( )4 2 2 5x x+ + , so 28 24 10y x x= + +  cuts 

the x-axis at 
1 5

  and  
2 2

x x= − = − . We can now make a rough sketch of the graph. The 

plot is shown in fig. 11. 

3 4 5 6 7 8 9 10 
Note: 4 is included in 
the range, 9 is not. 

fig. 1.11 

"��
��@�( Find the range of values which satisfy simultaneously both of: 
 
7 16 2x x≤ +  and 
 

( )1
3 3 0

3
x + >   

 

Note: you are asked for a range of 
values here, not just integers. 
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$5	������@'' Solve the inequality 
8

2
3x

≤
+

. 

 

fig. 12 Now, the region 28 24 10 0x x+ + <  corresponds to the region of the graph below 

the x-axis, i.e. in the region 
5 1
2 2

x− < < − . 

fig. 1.13 

The region ( )2 12 0x x − >  corresponds to 
0x <  and 6x >  

Another way to illustrate this inequality is 
to work out where the graphs of 22y x=  
and 12y x=  cross. We can plot these two 
graphs and write down the required range 
of  values of x that satisfy the inequality. 
The plots of 22y x=  and 12y x=  are 
shown in fig.1. 14. 

( )2 12y x x= −

22y x=

12y x=

fig. 1.14 

The region 22 12x x>  corresponds 
to the region where the graph of 

22y x=  is above the graph of 
12y x= , i.e. the regions 0x <  and 
6x >  

28 24 10y x x= + +

$5	������@'� Solve the inequality 
22 12x x> . 

We can rearrange 22 12x x>  to get 
( )2 12 0x x − > .  Now we plot 

( )2 12y x x= −  and read off the answer. 
The plot is shown in fig.1. 13.  
 

fig. 1.12 

fig. 1.15 

2 2 4 6y x x= + −
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First we must clear the fraction. Beware: we cannot multiply both sides by 3x + , because 
this may be a negative quantity. To ensure we are multiplying both sides by a positive 
quantity, we multiply by ( )2

3x + . Doing this gives, 
 

( ) ( )2 28 3 2 3       2 4 6 0x x x x+ ≤ + � + − ≥  (check!) 
 

( )( )   2 6 1 0x x� + − ≥ .  
 

So, 
8

2      3   or   1
3

x x
x

≤ ⇔ ≤ ≥
+

 

 
 
 
 
�

"���+��	������	���	�
���"������� 
 
4���6�	���#�%����� 
 
In this section, our aim is to understand how to divide a quadratic or cubic polynomial by 
a linear term. For example, how do we work out 23 12 9x x+ +  divided by 2x + ? When 
we divide a quadratic by a linear expression, we expect the answer to be linear (When we 
divide an expression of order m by an expression of order n, we expect the answer to be 
an expression of order m n− ). Before we tackle the problem of algebraic division, it will 
help us to first recall how we divide numbers. Consider 32 divided by 5. We can write: 
 
32

6 remainder 2
5

= . Alternatively we can write 32 6 5 2= × + . 

 

Now, when faced with 
23 12 9

2
x x

x
+ +

+
 we can write: 

 
( )( )23 12 9 linear term in 2 remainderx x x x+ + ≡ + + . 

 
The remainder, in this case will be a constant, one degree less that the ‘linear term’. 
We write the linear term in the general form ax b+ : 
 

( )( )23 12 9 2x x ax b x r+ + ≡ + + + . 
 
 Notice, we use the symbol ‘ ≡ ’ instead of an equals sign. This sign means ‘identically 
equal to’ and is used when the expression is valid for all values of x. Note: identities 
cannot be solved like equations can.  
 

"��
��@�� Solve the inequality 
2 3

3
1

x
x

+ ≤
−

 for x.�
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So the expression on the left of the identity sign is exactly the same as the expression on 
the right of the identity sign. Because we have 3 lots of 2x  on the left of the identity sign, 
we must have 3 lots of 2x  on the right of the identity sign. Look at the expression on the 
RHS; the only place where we will get 2x  terms is when we multiply ax  by x : 
 
 
 
 
 
i.e. we will have a lots of 2x  terms on the RHS. This means that 3a = . Next consider the 
x terms. On the LHS we have 12 lots of x. On the RHS we will get x terms when we 
multiply ax  by 2 and when we multiply b  by x: 
 
 
i.e. we will have 2a b+  
lots of x on the RHS, so 
12 2a b= + . Since 3a =  we 
have that 6b = . So now we can write: 
 

( )( )23 12 9 3 6 2x x x x r+ + ≡ + + + . Multiplying out the brackets, we can see that 3r = − . 
 
Finally we can write down the answer to the original problem: 
 

23 12 9 3
3 6

2 2
x x

x
x x
+ + ≡ + −

+ +
. 

 

From 
23 12 9

2
x x

x
+ +

+
 we write, ( )( )23 12 9 3 6 2 3x x x x+ + ≡ + + − .  

 
The term ( )3 6x +  is sometimes called the quotient. We also say that ( )3 6x + is a factor 

of 23 12 9x x+ + . 3−  is the remainder.  
 
 
"���+��	������"������ 

 
 
 
 

This can be proved by the following argument. 
 
Write ( )( )( ) Quotient Remainderf x x a= − + . When x a= ,  
 

( )( )( ) Quotient Remainderf a a a= − + , i.e. ( ) Remainderf a =  as stated. 

( )( )2ax b x+ +

( )( )2ax b x+ +

When the polynomial ( )f x  is divided by x a− , the remainder is ( )f a  
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$5	������@'� Find the remainder when 3 2( ) 3 4 6f x x x x= + + +  is divided by 3x − . 
 
From the remainder theorem, we have that the required remainder is: 
 

3 2(3) 3 3 4 3 3 6 126f = × + × + + = . 
 
The following is a corollary of the remainder theorem: 

 
 
 
 

This is often used when factorising cubic equations, as illustrated in the next example. 
�

$5	������@'* Write 3 2( ) 4 6f x x x x= + + −  as a product of three linear factors. 
 
The aim is to find a number a such that ( ) 0f a = , this will give us one of the factors, 
namely ( )x a− . Usually, trying the numbers 1, 2, 3± ± ±  will reveal at least one of the 

factors. Here we notice that (1) 0f = . This means that ( )1x −  is a factor of ( )f x . Now 
we can write: 
 

( )( )( ) 1 Quadratic factorf x x= − . We write the quadratic factor generally as 2ax bx c+ + ,  
 

( )( )2( ) 1f x x ax bx c= − + + . Comparing coefficients of 2x , x and constant terms reveals 

that 1, 5, 6a b c= = = , i.e.  
 

( )( )2( ) 1 5 6f x x x x= − + + . The quadratic term can be factorised to give 

 
( )( )( )( ) 1 2 3f x x x x= − + + . We have factorised ( )f x  as a product of three linear factors 

as required. We may have also noticed that ( 2) 0 and ( 3) 0f f− = − = , this would have 
given us the three linear factors immediately, though not all examples are as obvious as 
this.  

 
 
 
 
 
 
 

( )( ) 0      f a x a= ⇔ −  is a factor of ( )f x  

"��
��@�' Find the remainder when 3 2( ) 2 5 37 60g m m m m= − − +  is divided by 
4x − . Express ( )g m  as a product of three linear factors.�
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�
�

�

�
�

�
�

��	���
�	������	
���� 
 
Sketch the graph of 2( )f x x= . On the same graph, sketch ( ) 23 3f x x+ = +  and 

( ) 23 3f x x− = − . We can see that the graphs all have the same basic shape, but they are 

‘shifted’ parallel to the y-axis. 2( )f x x=  has a minimum at 0y = . ( ) 23 3f x x+ = +  has 

a minimum at 3y = , this is because every point on the graph of 2( )f x x=  has had 3 
added to it. ( ) 23 3f x x− = −  has a minimum at 3y = − , this is because every point on 

the graph of 2( )f x x=  has had 3 subtracted from it. We call such a ‘shift’, where the 
shape of the graph remains the same but the graph is moved relative to the axis, a 
translation. The plots are shown in fig. 1.17. 
 

 
 
 

"��
��@�� Suggest a possible equation for the curve in fig. 
1.16. 
 

 
 
 

Hint: Look at where 
the graph cuts the x-
axis 

fig.1. 17 

The transformation 
( )    ( )f x f x a→ +  is a translation 

by a units parallel to the y-axis in the 
positive direction. 
 
The transformation 

( )    ( )f x f x a→ −   is a translation 
by a units parallel to the y-axis in the 
negative direction. 
 

In general we can say that: 

fig. 1.16 
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Sketch the graph of 2( )f x x= . On the same graph, sketch ( ) ( )2
2 2f x x− = −  and 

( ) ( )2
2 2f x x+ = + . What are the relationships between the three graphs? Note, ( )2f x −  

means ‘substitute 2x −  for x in the expression 2( )f x x= ’ and ( )2f x +  means 

‘substitute 2x +  for x in the expression 2( )f x x= ’. The plots are shown in fig. 1.18.  
 

 
 
 
 
In general, we can say that: 

 
 
 
 
 
 
 
 
 
 
 
Sketch the graph of 2( )f x x= . On the same graph sketch 23 ( ) 3f x x= . What is the 
relationship between the two graphs? The plots are shown in fig. 1.19. 
 

2( )f x x=

( ) ( )2
2 2f x x− = −

( ) ( )2
2 2f x x+ = +

fig. 1.18 

We can see that the graphs all have the 
same basic shape, but they are 
translations of each other parallel to the 
x-axis. 2( )f x x=  has a minimum at 

0x = . ( ) ( )2
2 2f x x− = −  has a 

minimum at 2x = , i.e. it is a translation 
of ( )f x  by 2 units parallel to the x-axis 
in the positive direction. 

( ) ( )2
2 2f x x+ = +  has a minimum at 

2x = − , i.e. it is a translation of ( )f x  by 
2 units parallel to the x-axis in the 
negative direction.  

The transformation ( )( )    f x f x a→ −  is a translation by a units parallel to the x-axis 
in the positive direction. 
 
The transformation ( )( )    f x f x a→ +  is a translation by a units parallel to the x-axis 
in the negative direction. 

��������
This seems counter intuitive. The translation ( )( )    f x f x a→ −  moves the graph 

in the positive direction and the translation ( )( )    f x f x a→ +  moves the graph 

in the negative direction. The signs may cause us confusion. 
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fig.1. 20 

Here, the basic shape of the graph has changed. In fact, the graph of 2( )f x x=  has been 
stretched parallel to the y-axis by a factor of 3 to make the graph of 23 ( ) 3f x x= . 
 

 
 
 
 
In general we can say that: 

 
Note: Points ( ) ( ), 0,x y y=  are unaffected by this transformation. The same is true for 
the following type of transformation. 
 
 
Sketch the graph of 2( )f x x= . On the same graph sketch 2(2 ) 4f x x= . What is the 
relationship between the two graphs? The plots are shown in fig. 1.20. 
 

 

fig. 1.19 

2( )f x x=

23 ( ) 3f x x=

The transformation ( )( )    f x af x→  is a stretch, parallel to the y-axis, by a factor a. 

Here, the graph of 2( )f x x=  has 
been stretched parallel to the x-axis 

by a factor of 
1
2

 to produce the 

graph of ( )2f x  . (We may think of 
this as a ‘squash’ parallel to the x-
axis). 
 
In general we can say that: 

2( )f x x=

2(2 ) 4f x x=
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$5	������@'� Sketch the function 3( )f x x= . On the same graph, sketch 

3( ) 2 3g x x= − . 
 

We first sketch the graph of 3( )f x x= . We 
perform two transformations on this graph to get 
the graph of 3( ) 2 3g x x= − . We notice that 

( ) 2 ( ) 3g x f x= − . The effect of multiplying ( )f x  
by 2 is to stretch the graph by a factor of 2 parallel 
to the y-axis. The effect of subtracting 3 from 

( )f x  translates the graph parallel to the y-axis 3 
units in the negative direction. Combining these 
transformations leads to the plot shown in 
 fig.1. 21. 

 
 
 

 
�

����
����
����
����
����
����
����
����
����
����

The transformation ( )( )    f x f ax→  is a stretch, parallel to the x-axis, by a factor 
1
a

. 

fig. 1.21 

"��
��@�* The function f is defined by ( )
1

( ) ,  ,  4
2 4

f x x x
x

= ∈ ≠
−

� . Sketch the 

graph of f. Hint: Start with the graph of 
1
x

 and perform transformations on it.�

( )f x

( )g x
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�	
�	
�	
������� � �� �� ����� �� � ������ � �� �� ����� �� � ������ � �� �� ����� �� � ������ � �� �� ����� �� � ��������
�
�

"������	
�������	��
�	���
�,��� 
 
We are familiar with straight lines of the form y mx c= + , where m is the gradient and c 
is the intercept on the y-axis. Illustrated in fig. 1.22.  
�

�
�

�

�
�

�
�

�
�

�
�

�
$5	������@'/ Find the equation of the straight line which passes through the points 
( )2, 12− −  and ( )4,6 . �
 
We have the two points ( ) ( ), 2, 12x y = − −  and ( ) ( ), 4,6x y = . We can find the gradient 

from this information, because 
18

gradient 3
6

y
x

∆= = =
∆

, as illustrated in fig.1. 23. 

 
�

�
�

�
�

�
�
 
 
 
 
 
 
 
 

y∆

x∆

fig.1. 22 

gradient
y

m
x

∆= =
∆

 

 
intercept on -axisy c= . 
 
We can work out the equation of a straight 
line given any two points on the line, or the 
gradient of the line and one point on the 
line.  

y∆

x∆

fig. 1.23 

So the equation has the form 
3y x c= + . To find c, we substitute 

either one of the given points into 
the equation 3y x c= + . Let us 
substitute in the point ( )4,6 . This 
gives us that 6 3 4 c= × +  

 6c� = − . So the required 
equation is 3 6y x= −  

"��
��@�* Find the equation of the straight line with gradient 2−  and which passes 
through the point ( )1, 6− .�
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Sometimes, the equation of a straight line may be given in the form 0Ax By C+ + = . In 
this case, to find the gradient and intercept, it is usually easiest to rearrange the equation 
into the standard form y mx c= + . 
 
$5	������@'/ Find the gradient and y intercept of the straight line 4 12 40 0y x+ − = . 
 
We can rearrange this into standard form as 3 10y x= − + . So the gradient is 3−  and the y 
intercept is 10.  

�

�

#��
	����-�
.����".������
��
 
What is the distance between the points ( )2,4  and ( )8,12 ? The points are plotted in fig. 
1.24. 
 

 
�

�
�

��������
 
 
Look back at fig. 1.24. What is the midpoint between ( )2,4  and ( )8,12 ? The midpoint 
lies on the straight line joining the two points and is equidistant to the two points. Look at 
the triangle in fig.1. 25. To find the midpoint, we imagine a vertical line bisecting the 

"��
��@�/ Find the gradient of the straight line 3
4 2
y x− = . Also find where this line 

crosses both axes. �

"��
��@�� Find the gradient of the straight line 4 12 40 0y x+ − = . Also find where 
this line crosses both axes. �

fig. 1.24 

The horizontal distance between the two 
points in 6 units. The vertical distance 
between the two points is 8 units. From 
Pythagoras’ Theorem, the (shortest) 
distance between the two points is 

2 26 8 10+ =  units. 

The distance between points 
( )1 1,x y  and ( )2 2,x y  is 

( ) ( )2 2
1 2 1 2x x y y− + −  
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base of the triangle in half. Imagine a horizontal line bisecting the height of the triangle in 
half. Where these two lines meet is the midpoint of ( )2,4  and ( )8,12 . 
 

 
�
�

$5	������@'/ Find the distance between the points ( ) ( )1,3  and 6,27− . 

( ) ( )2 2
Distance 1 6 3 27 625 25= − − + − = = . 

 

�

�
������
������	����
�����".�������������	��,���� 

 
�

The coordinate of the midpoint of the 
line joining ( )1 1,x y  and ( )2 2,x y  is 

1 2 1 2,
2 2

x x y y+ +� �
� �
� �

 

fig. 1.25 

"��
��@�! Find the distance between the points ( )3, 4A = − −  and ( )15,12B = − . 
Find the coordinates of the midpoint of the straight line joining A and B. �

"��
��@�� Prove that ABC is a right-angled triangle where ( ) ( )2,1 ,   5, 1 ,  A B= = −  

( )9,5C = .�

When two straight lines are perpendicular, the product of their gradients is 1− . 
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Look at  fig. 1.26. This shows two perpendicular lines, 1l  and 2l . Let the angle that 2l  
makes with the x-axis be θ . The angle that 1l  makes with the y-axis is also θ , as shown. 

Let the gradient of 2l  be 2m . From the 
definition of the gradient, we have that 

2 tanm θ= . We also have that 

tan
BC
BD

θ = .  Hence, 2 tan
BC

m
BD

θ= = .  

Now, 
BD
BC

−  is the gradient of line 1l , 

let us call this 1m . So 

2
1

1
tan

BC
m

BD m
θ= = = − . �

 
 

 
 

Hence 2
1

1
m

m
= − . So the product of the gradients of two perpendicular straight lines  

is 1− . 
�

�
$5	������@'! Find the equation of the line which passes through the point 

3
3,

2
� �− −� �
� �

 and is perpendicular to the line 2 4y x= + .�

If the line is to be perpendicular to the given line, it must have gradient 
1
2

− , i.e. it must 

have the form 
1
2

y x c= − + . Substituting in the given point which lies on this line allows 

us to find c. We have that, �
 

( )3 1
3       3

2 2
c c− = − × − + � = − . So the required equation is 

1
3

2
y x= − − . 

 
 
�

�
�

�

2l

θ

θ

1l

 "��
��@�� Find the equation of the straight line which passes through the origin 
and is perpendicular to the line joining the points ( ) ( )4,1  and 1, 4 . 

fig. 1.26 
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r 

a 

x 

b 

x - a 

y 

y 
- 
b 

"������	
�������	��������

�

Look at the circle in fig. 1.27. A radius has been drawn from the centre (origin) to a point 
on the circumference ( ),x y . What is the equation of this circle? We need to write down 
an equation involving x and y (and r). From Pythagoras’ Theorem, we can write, 

2 2 2x y r+ = .  This is the equation of a circle with centre at the origin and radius r. We 
can see that, in this case, 2r = , so the equation of the circle in fig. 27 is 2 2 22x y+ = , or 

2 2 4x y+ = . 
�

 
  
 
 
 
What about a circle whose centre is not at the       
origin? 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

fig .1. 27 

The equation of a circle with centre at 
the origin and radius r is 2 2 2x y r+ =  

 

fig. 1.28 

Study fig. 1.28. Here we have a circle with 
centre (a,b) and radius r. We can use 
Pythagoras’ Theorem here to write down a 
similar expression for the right angled 
triangle (in blue), but this time, the base of 
the triangle has length x – a units, and the 
height of the triangle is y – b units. We 
have, ( ) ( )2 2 2x a y b r− + − = .  
 

The equation of a circle with centre 
(a,b) and radius r is 

( ) ( )2 2 2x a y b r− + − =  

A circle with centre not at the origin can also 
be thought of as a translation of a circle with 
centre at the origin.  

$5	������@'� Find the centre and radius 
of the following circle: 
 

2 22 6 6 0x x y y+ + − − = . 
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Here we have to rewrite the equation above in the standard form, ( ) ( )2 2 2x a y b r− + − = , 
so that we can read off the required information. 
 
To do this, we need to complete the square.  
 

( ) ( ) ( ) ( )

2 2

2 2 2 2

2 6 6 0

   1 1 3 9 6 0      1 3 16

x x y y

x y x y

+ + − − =

� + − + − − − = � + + − =

 

 
Now we can see that this is the equation of a circle with centre ( )1,3−  and radius 

16 4= . 
 
$5	������@'2 Find the equation of the circle with centre at ( )1, 2−  and which passes 

through the point ( )1,0 . 
 
Since we are told that the centre is at ( )1, 2− , we can immediately write:  
 

( ) ( )2 2 21 2x y r− + + = .  
 
Now all that remains is to find r. To do this, we use the other piece of information given, 
i.e. that the circle passes through the point ( )1,0 , i.e. when 1,  0x y= = . So, setting 1x =  

and 0y =  we have: 
 

( )2 2 20 2       4      2r r r+ = � = � =  
 
Notice, we select the positive sign (we can’t have a circle with a negative radius).  
 
So the required equation is: 
 

( ) ( )2 2
1 2 4x y− + + = . 

 
 
 
 

�

�

"��
��@�2 Find the equation of the circle with centre ( )1, 2− −  and radius 4.�

"��
��@'( Find the centre and radius of the circle whose equation is 
2 2 8 2 8 0x y x y+ + − − = .�
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�������������
��� 
 

� The angle in a semicircle is a right angle.  
� The perpendicular from the centre to a chord bisects the chord 
� The tangent to a circle is perpendicular to the radius at its point of contact 

 
Task: Draw pictures to illustrate the above circle properties. 
 
"	����
��	���0���	�� 
 
 
 
 
 
 
 
 
 
 
 
Our first job is to write the equation of the circle in standard form. Completing the square 
gives the equation as ( ) ( )2 2

3 2 5x y+ + − =  (check). Now let us make a sketch of the 

circle and the point ( )1,1− , see fig. 1.30.  
 

 
 
 
 
 

 
 
 

 
 

this line has gradient 
1
2

− , so it has the form 
1
2

y x c= − + . To find c, we use one on the 

given points that lies on the line. We will use the point ( )1,1−  (we could have used the 

point ( )3, 2− ). Substituting in ( )1,1−  gives us that 
1 1

1       
2 2

c c= + � = . So the equation 

of the radius joining the points ( )3, 2−  and ( )1,1−  is 
1 1
2 2

y x= − + .  

 

Tangent 

Normal 

A line that just touches a circle (or curve) but 
does not actually cross it is called a tangent. A 
line that is at right angles to another line is said 
to be normal to it, as illustrated in fig. 1.29. 
 
$5	������@�( Find the equation of the 
tangent to the circle 2 2 6 4 8 0x y x y+ + − + =  at 

the point ( )1,1− . fig. 1.29 

2 2 6 4 8 0x y x y+ + − + =

fig. 1.30 

In order to find the equation of the tangent, we must 
first find the equation of the radius joining the points 
( )3, 2−  and ( )1,1− . We then use one of the circle 
properties, namely that the tangent to a circle is 
perpendicular to the radius at its point of contact, 
plus the point ( )1,1− , which lies on the tangent, to 
find the equation of the tangent.  
First we find the equation of the radius joining the 
points ( )3, 2−  and ( )1,1− . We can easily see that  
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Now the equation of the tangent is perpendicular to this line at the point of contact, 
( )1,1− , so it has gradient 2 (product of the gradients is -1). So the equation of the tangent 

has the form 2y x c= + . To find c we use the given point that lies on the line, namely 

( )1,1− . Substituting this in gives 1 2       3c c= − + � = . So the equation of the tangent at 

the point ( )1,1−  is 2 3y x= + . 

 
 
 

����
����
	
��� ������� ������ �	
��� ������� ������ �	
��� ������� ������ �	
��� ������� ������ �  
 
 
)�
�����
��� 
 
We are familiar with finding the gradients of straight lines. The gradient of a straight line 
is a measure of how steep the line is. Does it make any sense to talk about the gradient of 
a curve? Look back at fig. 1.2, which shows the plot of 2( )f x x= . What is the gradient of 

2( )f x x= ? Unlike a straight line, which has a constant steepness, 2( )f x x=  is a curve 
and so has no fixed steepness. The graph is steeper at the point 4x =  than it is at the 
point 1x = . At the point 0x = , the graph is ‘flat’; it has no steepness here. When 
working with curves, we cannot give a constant gradient in the same way that we can for 
straight lines. Instead, we have to talk about the gradient of a curve at a particular point. 
So how do we find the gradient of a curve at a particular point? Let us return to the graph 
of 2( )f x x= , which is drawn again in fig. 1.31. What is the gradient of this curve at the 
point 3x = ? One way to think about this is to draw a tangent to the curve at the point 

3x = . This tangent is, of course, a straight line and so we can find its gradient.  
 
 
 
 
 

"��
��@'� Show that the point ( )6,3  lies on the circle 2 2 10 12 51 0x y x y+ − − + = . 

Find the equation of the tangent to the circle at the point ( )6,3 .�

"��
��@'' The point ( )9, p  lies on the circle 2 2 14 8 57 0x y x y+ − + + = . Find  p. 

Find the equation of the normal of the tangent at the point ( )9, p . Find the equation of 

the tangent to the circle at the point ( )9, p .�
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fig. 1.32 

 

 
 
 
 
�

"�����	����
����
���"	����
�	��	�,���
 
 
fig. 1.32 shows an arbitrary function ( )f x . We want to find the gradient of ( )f x  at the 
point P, where x a= . We call the gradient of ( )f x  at the point x a=  the derivative of 

( )f x  at x a= . The derivative of ( )f x  at x a=  can be written as '( )f a , or  
 
d ( ) d ( )

   or   
d d x a

f a f x
x x =

. 

 
As we have seen, the gradient of ( )f x  at the point x a=  is the gradient of the tangent of 

( )f x  at x a= . Drawing in a tangent by hand and measuring the gradient is a time 
consuming and inaccurate way to proceed. Instead we consider another point on ( )f x , 
point Q, and draw in the line joining Pand Q. This line is called a chord. The point Q has 
x-coordinate, x a h= + .  
 

 
 
 

fig. 1.31 

2( )f x x=

In fact we define the gradient of the curve 
2( )f x x=  at the point 3x =  to be the gradient of 

the tangent of the curve at the point 3x = . If we 
were to draw a tangent to the curve at the point 

8x = , the tangent would be steeper, and so the 
gradient of the curve at the point 8x =  would be 
a higher value than the gradient of the curve at 
the point 3x = . The gradient of the curve at the 
point 0x =  is a horizontal line, so the gradient of 
the curve at 0x =  is zero.  
 

Now we can see from the diagram 
that the gradient of the chord PQ is 
approximately equal to the gradient 
of the tangent at P. We can see from 
the diagram that the gradient of the 

chord PQ is 
( ) ( )f a h f a

h

+ −
 

 
Imagine that the point Q slides down 

( )f x  so that it is closer to P, i.e. h 
decreases.  
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The closer Q gets to P, the closer the gradient of the chord PQ gets to the gradient of the 
tangent at P. We say that ‘in the limit as h tends to zero’, the gradient of the chord PQ 
equals the gradient of the tangent at P. This means that as h decreases and Q gets closer 
to P, the gradient of the chord PQ gets closer to the gradient of the tangent at P. As we 
make h very small, so that Q and P are very close, the gradient of the chord PQ gets very 
close to the gradient of the tangent at P. We can make h as small as we like. As h is made 
arbitrarily small, so Q and P become arbitrarily close together, the gradient of PQ 
becomes arbitrarily close to the gradient of the tangent at P. We write: 
 

( ) ( ) ( )
0

' lim
h

f a h f a
f a

h→

� �+ −
= � �

� �
. 

 
Another notation is often used for the derivative. If ( )y f x= , then the notation 

( ) d
'

d
y

f x
x

=  is often used. Note 
d
d
y
x

 is not a fraction, it is just a piece of notation to stand 

for the derivative of y with respect to x (‘with respect to x’ just means that the variable is 

x; if we had ( )y f t= , then the derivative would be written 
d
dt
y

).  

 
Let us look at a particular example. Let us consider the simplest quadratic equation 

2y x= . Suppose we want to find the gradient of the graph of 2y x=  at a general point x.  
 

 
 
 
 
We make h so small that it becomes insignificant, so 2x h+  becomes 2x  as h tends to 
zero. Therefore, the gradient of the graph of 2y x=  at any point x, is 2x . We write: 
 

( ) ( )
( ) ( )

2 2

0 0
' lim lim 2 2

h h

x h x
f x x h x

x h x→ →

� �+ −
� �= = + =
� �+ −� �

,  or  

 

x x h+

2
x

( )2
x h+

2y x= The gradient of the chord PQ is: 
 

( )2 2 2 2 22x h x x xh h x
h h

+ − + + −=  

 

                       
22

2
xh h

x h
h
+= = +  

 
The gradient at the general point P is 
the limit of the gradient of the cord as 

0h → . This means that we make h 
smaller and smaller (approach zero). fig. 1.33 
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( )
( ) ( )

2 2

0 0

d
lim lim 2 2

d h h

x h xy
x h x

x x h x→ →

� �+ −
� �= = + =
� �+ −� �

. 

 
For example, the gradient of the tangent of the graph of 2y x=  at the point 4x =  is 
2 2 4 8x = × = .  
 
A similar argument can be make to find the derivative of 3y x= . It turns out that the 

derivative of 3y x=  is 2d
3

d
y

x
x

=  We cal also use this argument to find the derivative of  

4y x= , although this is more tricky. If you look back at the argument for 2y x= , you 
will see that to find the derivative of 4y x=  from first principles, we will have to expand 

( )4
x h+ , which takes some time (unless you know a shortcut). It turns out, however, that 

the derivative of 4y x=  is 3d
4

d
y

x
x

= . From these few examples, can you work out what 

the derivative of 5y x=  is? The answer is 4d
5

d
y

x
x

= .  

 
"���#���%	
�%������������ 

 

The derivative of ny x=  is 1d
d

ny
nx

x
−= . More generally the derivative of ny ax=  is 

1d
d

ny
nax

x
−=  (where a and n are constants).  

 
 
This result is valid for all ,  a n∈� . 
 
 

 
$5	������@�� Find the gradient of the tangent to the curve 53y x=  at the point 

2x = . 
 
 
Following the rule we have: 
 

5 1 4d
3 5 15

d
y

x x
x

−= × = .  So the gradient of the tangent at 2x =  is: 

 

 4

2

d
15 2 240

d x

y
x =

= × = .  

 

If ny ax=  then 1d
d

ny
nax

x
−=  
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The notation 
2

d
d x

y
x =

 stands for ‘the derivative of y with respect to the variable x,  

 
evaluated at 2x = ’. 
 
$5	������@�' Find the coordinates of the point P which lies on the curve 

( ) 2f x x=  such that the tangent to ( )f x  at P has gradient 
1
3

. 

 

First we write ( ) 2f x x=  as ( )
1
22f x x= . Then we differentiate,  

 

( )
1 1

1
2 21 1

' 2
2

f x x x
x

− −
= × = = . 

Now we want the gradient of the tangent to be 
1
3

, i.e. we want ( ) 1 1
'

3
f x

x
= = , so we 

must have that 9x = , i.e. ( ) 1 1
'9

39
f = = .  

When 9x = , ( )9 2 9 6f = = . So the coordinates of the point P are ( )9,6 .  

 
 
����1�#����������������
���� 
 
If we have an expression which consists of a sum or difference of several terms, for 
example, 2 42y x x= − , then we differentiate the expression by differentiating each term 

individually, i.e. ( )2 1 4 1 3 2' 2 2 1 4 4 4 4 1y x x x x x x− −= × − × = − = − . 

 
 
 
 

#���%	
�%�����	�����
	�
 
 
If a function simply consists of a constant term, y a= , where a is a constant, then ' 0y = . 
We can see why this is true, because y a=  can be written as 0y ax= (remember, 
anything to the power zero is one) and following the rule we have 0 1' 0 0y ax −= × = . Also, 

"��
��@'� Given that ( ) 3

2
g m

m
−= , find ( )'81g . Hint: First write ( )g m  as 

( ) 32g m m−= −  and then follow the rule.�

If ( ) ( ) ( )1 2 ... ny f x f x f x= + + +  then ( ) ( ) ( )1 2' ' ' ... 'ny f x f x f x= + + +  
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the graph of y a= , where a is a constant, is a straight, horizontal line, and so has zero 
gradient.  
 

$5	������@�� If 
4

6p
t

= + , find 
d
d
p
t

. 

 
First we write, 14 6p t−= + . Following the rules, remembering that the derivative of a 
constant is zero, we have: 
 

 1 1 2
2

d 4
1 4 0 4

d
p

t t
t t

− − −= − × + = − = − . 

 
We see that adding any constant to a function does not change its derivative. Look back 
at the section on graphical transformations. We saw that the transformation 

( )    ( )f x f x a→ +  is a translation by a units parallel to the y-axis, i.e. adding a constant 
to a function simply translates it, it does not change its gradient at any point.  

 
 
 
 
 

 
 
)�
�����
	
����	��	�+	
�������	����
�
Suppose that y is a linear function of x. The gradient of the line tells us the rate at with y 
changes with respect to x. For example, the line 2y x=  has gradient 2. This means that 
for every 2 units the line moves up in the y direction, the line moves 1 unit along in the x 
direction.  
 
The simplest way to consider a function as a rate of change is to consider a velocity 
function. If a body is moving with constant velocity, then the velocity can be calculated 
by dividing the distance traveled by the time taken. Alternatively, if we plot distance 
traveled against time, then the gradient of the line will give the velocity. fig. 1.34 shows 
the distance against time plots for two bodies A and B.  
 

"��
��@'* Given that ( ) 2 1
3g d d d

d
π= + − −  find ( )'g d .�

"��
��@'� The function 3 ny x x= + , where n is an integer, has a tangent at the 
point 1x =  with gradient -8. Find n. �
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(Assuming that distance is measured in metres and time is measured in seconds). 
 
 
Now consider fig. 1.35. This shows the distance – time plot for body C. 
 

 
 
 
 
steeper here. The tangent at 3t =  has gradient 6. This means that when 3t = , the rate of 
change of distance with respect to time is 16 ms− . The tangent at 8t =  has gradient 16. 
This means that when 8t = , the rate of change of distance with respect to time is 116 ms− . 
The gradients of the tangents of line C are continuously increasing. The gradient of the 
tangent at 0t =  is zero, and the gradients of the tangents increase as t increases. Body C 
as accelerating. 
 
�
�
	
���	�������
� 
 

fig. 1.36 shows a plot of 3 21 3
18 7

3 2
y x x x= + − + . There are two special points on this 

curve where the gradient of the tangent is zero. These points are 6x = −  and 3x = .  
 

fig. 1.34 

Which body is travelling faster? The gradient of 
the lines represents the velocity (distance divided 
by time). The higher the gradient, the higher the 
velocity, i.e. the higher the rate of change of 
distance with respect to time. Therefore, body A 
has a greater velocity than body B. We can see that 
the gradient of line A is 2, while the gradient of 

line B is 
1
2

. Body A therefore has a velocity of 

12 ms− , whilst body B has a velocity of 11
 ms

2
−  

 

fig. 1.35 

What is the velocity of body C? This 
question is essentially asking what is the 
gradient of line C. As we now know, line C 
does not have a fixed gradient. Body C does 
not have a fixed velocity, i.e. it is not 
travelling at constant velocity. The gradient 
of the line represents the velocity, but the 
gradient of C is different at different points. 
Tangents to C have been drawn at times 

3t =  and 8t = . Of course, body C has a 
greater velocity at 8t =  than it does at 3t = , 
because the gradient of the tangent is  
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i.e. where 2 3 18 0x x+ − = . Factorising and solving this gives, 
( ) ( )6 3 0    6x x x+ − = � = −  or 3x = . These are the stationary points. Notice, the 

turning point at 6x = −  corresponds to a local maximum, whereas the turning point at 
3x =  corresponds to a local minimum.  

  
$5	������@�* Find the coordinates of the stationary point of the function 

( )( )3 2 4y x x= − + . 
 
We need to differentiate y. First, we need to multiply the brackets out: 
 

2 d
2 2 12      4 2

d
y

y x x x
x

= − − � = − . Stationary points occur when 
d

0
d
y
x

= , i.e. when: 

 

1
4 2 0    

2
x x− = � = . When 

1
2

x = , 
2

1 1 1
2 2 12 12

2 2 2
y � �= × − × − = −� �

� �
. 

 

So the coordinates of the stationary point are 
1 1

,  12
2 2

� �
� �
� �

. 

�

�

fig. 1.36 

The tangents at these two points have 
been drawn on the graph. The points 
where the tangent of the curve has 
gradient zero are called stationary 
points. How do we find where the 
stationary points are on a curve? Let us 

use the example 3 21 3
18 7

3 2
y x x x= + − + . 

The derivative of this function is 
2' 3 18y x x= + − . Now the stationary 

points occur where the derivative is zero, 

3 21 3
18 7

3 2
y x x x= + − +

"��
��@'/ Find the x-coordinates of the stationary points of the curve 
3 21

2 32
3

y x x x= + − . Does each stationary point correspond to a local maximum or a 

local minimum?�
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�
)����	�����	���#����	��������
���� 
 
A function that has a positive gradient everywhere is called a (strictly) increasing 
function. A function that has a negative gradient everywhere is called a (strictly) 
decreasing function. fig. 1.37 shows an example of an increasing function, ( )f x . fig. 

1.38 shows an example of an decreasing function, ( )g x .  
 

                        
 
 
 
If a function has a positive gradient at a particular point, we say that the function is 
increasing at that point. If a function has a negative gradient at a particular point, we say 
that the function is decreasing at that point. 
 
$5	������@���Is the function 3 23 7 2 9y x x x= − + −  increasing or decreasing at the 
points 1x = , 2x = ? What can you say about the graph between the points 1x =  and 

2x = . 
 

2d
9 14 2

d
y

x x
x

= − +   

 
2

1

d
9 1 14 1 2 3

d x

y
x =

= × − × + = − , so the function is decreasing at 1x = . 

 
2

2

d
9 2 14 2 2 6

d x

y
x =

= × − × + = , so the function is increasing at 2x = . 

 

fig. 1.37 fig. 1.38 

"��
��@'!�Find the turning points of the function 2 49y x= − . Make a sketch of the 
function, marking on where the function crosses the x-axis and the coordinates of the 
stationary point.�
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x 

If the function is decreasing at 1x =  and increasing at 2x = , then there must be (at least 
one) turning point (at least a local minimum) between these two points, as illustrated in 
fig. 1.39. 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
�������3�����#���%	
�%�� 
 
We can differentiate a given function more than once. Consider 3 22 3 4y x x x= − + − . 

Differentiating this function once gives 2d
6 2 3

d
y

x x
x

= − + . We can differentiate the 

function a second time, the symbol we use to denote the second derivative is 
2

2

d
d

y
x

, we 

have that 
2

2

d
12 2

d
y

x
x

= − . Notice, as with 
d
d
y
x

, 
2

2

d
d

y
x

 is just a symbol, a piece of notation. It  

 
is not a fraction and, despite the appearance of ‘2’, nothing is squared! It is simply a 
symbol to say that we have differentiated twice. 
 
When the function notation is used, for example given a function ( )f x , the symbol for 

the derivative is ( )'f x  and the symbol for the second derivative is ( )''f x . 
 

$5	������@�/ Given ( )3
2 3y x= + , find 

2

2

d
d

y
x

. 

 
 

1x = 2x =

fig. 1.39 

y 

"��
��@'� Consider the function ( ) 34
4 5

3
g t x x= − + . Is this function increasing, 

decreasing or stationary at the points 0, 1 and 2x x x= = = ? Is the stationary point a 
local maximum or a local minimum?�
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First we expand the bracket: 
 

( ) ( ) ( )3 22 3 2 3 4 6 9y x x x x= + = + + +  

 
3 2 28 12 18 12 18 27x x x x x= + + + + +  

 
3 28 24 36 27x x x= + + + . 

 
 

 
 
 
 

 
�

�
�

�
�

4�����	
�����
��#�
����������	5��	�	��������	 
 
If a function ( )d f t=  represents the relationship between the distance traveled and time 
taken of a body, then we have seen that the derivative represents the rate of change of 
distance with respect to time, the velocity. The second derivative represents the rate of 
change of the rate of change of distance with respect to time, or the rate of change of 
velocity with respect to time, which is the acceleration.  
 
We can use the second derivative to determine whether a stationary point is a local 
maximum or local minimum. If a function ( )f x  has a stationary point at x a= , i.e. 

( )' 0f a = , to determine whether this is a maximum or a minimum we compute ( )''f a . 

If ( )'' 0f a > , then the turning point is a local minimum. If ( )'' 0f a < , then the turning 
point is a local maximum. 

 
 
 
 
 
 
  
 
 
 
 

Now, differentiation once gives: 
 

2d
24 48 36

d
y

x x
x

= + + . 

 
Differentiating a second time gives: 
 

( )
2

2

d
48 48 48 1

d
y

x x
x

= + = +  

"��
��@'2 Given that ( ) ( )3
2 1f x x x= − , find ( )''f x �

"��
��@�( Given that ( )2
2 7y x= − , find 

2

2

d
d

y
x
�

If a function ( )y f x=  has a stationary point at P, then if: 
 

2

2

d
0

d
y

x
>  at P, the stationary point is a local minimum 

 
 

2

2

d
0

d
y

x
<  at P, the stationary point is a local maximum. 
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�

$5	������@�! Find the stationary points of the function ( ) 3 15 2f x x x= − + . 
Determine whether these stationary points are maxima or minima. 
 
Differentiation gives, ( ) 2' 3 15f x x= − . Stationary points occur when 

( ) 2' 3 15 0f x x= − = , i.e. when 2 15
    5

3
x x= � = ± . 

 
To determine whether these stationary points are maxima or minima, we need to compute 
the second derivative, ( )'' 6f x x= .  
 
Now we have that, ( )'' 5 6 5f = , which is positive, so at 5x =  we have a local 

minimum.  
 

( )'' 5 6 5f − = − , which is negative, so at 5x = −  we have a local maximum. 

 
 
3�
����	
�������6���� 
 
$5	������@�� A soft drinks manufacturer is designing new packaging for its fizzy 
drink. The container for the drink will be a can made from thin aluminium and is to have 
a capacity of 3333 ml 333 cm= . Varying the height and radius of the container will vary 
the amount of aluminium that is needed for each can. What should the height and radius 
of the can be so that the minimum amount of aluminium is needed? 
 
 
 
 
 
 
 
 

��������
Remember: 

2

2

d
0

d
y

x
>  corresponds to a minimum, while 

2

2

d
0

d
y

x
<  corresponds to a 

maximum. 

"��
��@�(�Find the stationary points of the curve ( ) 3 24
15 14 10

3
f x x x x= − + − . 

Using the second derivative test, determine whether these stationary points are 
maxima or minima.�

r

h 

fig. 1.40 

Now, the surface area of the can is given by: 
 

22 2S r rhπ π= +  ………………………………(1)  
 
The problem with this equation is that is has  
 
two variables, r and h. We need to eliminate one of them.  
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To do this we can use the equation for the volume of the can, which is given by: 
 

2V r hπ=  …………………………………………………………......(2) 
 
We know that the volume of the can is to be 3333 cm . We can substitute this into 
equation (2) and rearrange for h. We can then use this to eliminate h from equation (1). 
From (2) we have: 
 

2
2

333
333     r h h

r
π

π
= � =  

 
Substituting for h in (1) gives: 
 

2 2
2

333 666
2 2       2S r r S r

r r
π π π

π
= + × � = +  

 

The minimum / maximum surface area occurs when 
d

0
d
S
r

= .  

 

Now 2 12 666S r rπ −= + , so 2
2

d 666
4 666 4

d
S

r r r
r r

π π−= − = − .  

 

So, 
d

0
d
S
r

=  when 2

666
4 0r

r
π − = . Multiplying throughout by 2r  gives: 

 
 

3 3
666

4 666 0      3.76 cm
4

r rπ
π

− = � = =  to three significant figures. 

 
Now we use the rearranged form of equation (2) to find the corresponding value of h: 
 

2

333
h

rπ
= , so when 3.76r = , 2

333
7.50 cm

3.76
h

π
= =

×
 to three significant figures.  

 
We need to make sure that these optimized values correspond to minima and not maxima. 

Performing the second derivative test on 2 666
2S r

r
π= + , for 3.76r =  reveals that the 

optimized values are indeed minimum (check). 

"��
��@�� At a speed of x km/hour, a vehicle can cover y km on 1 litre of fuel, 
where: 
 

2 3

5
2 60 1800
x x x

y = + + − . 

 
Calculate the maximum distance which the vehicle can travel on 30 litres of fuel. 
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���� �� ����� �	
���� �� ����� �	
���� �� ����� �	
���� �� ����� � ����
 
 
)�
�����
��� 
 
Given that ( ) 2' 9f x x=  can we say what ( )f x  is? Look back at the rule for 

differentiating ny ax= . To differentiate an expression of this form, we multiply the 
coefficient by the exponent, and then subtract one form the exponent. To reverse this 
process, we simply add one on to the exponent and then divide the coefficient by the new 

exponent. So, following this rule, if ( ) 2' 9f x x= , then ( ) 2 1 39
3

2 1
f x x x+= =

+
. This  

 
seems to be all well and good, if we differentiate our suggestion for ( )f x , we do indeed 

get ( ) 2' 9f x x= . There is a slight problem, however. If we differentiate ( ) 33 2f x x= + , 

we also get ( ) 2' 9f x x= . In fact, if we differentiate ( ) 33f x x c= + , where c is any 

constant, we get ( ) 2' 9f x x= . 

�
"���)�
���	������������ 

 
Integration can be thought of as the reverse process of differentiation. To integrate 

ny ax= , we reverse the process for differentiation, i.e. we add one to the index and 
divide the coefficient by the new index. We must also add on a constant, c. This constant 
is called the constant of integration. This constant of integration is necessary for the 
reason discussed above; differentiating eliminates constant terms and so when reversing 
this process, we must be aware that constant terms may have been eliminated by the 
differentiation process. The notation used to stand for the integral of a function ( )f x  
with respect to a variable x is as follows: 
 

 ( )  df x x�  

 
 
 
 
 
The symbol � is the symbol for integration. The symbol dx  simply means that we are 

integrating with respect to the variable x. If the variable were t, then this symbol would be 
replaced with dt . 
 

The integral of nax  is 1

1
na

x c
n

+ +
+

, where c is the constant of integration. We write: 

Integral sign 

Notation to state that the 
variable is x 

Function to be integrated 
(called the integrand) 
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This result is valid for all ,  a n∈� , except for 1x = − . 
 

If 1x = − , then following this rule will give 1 1 1 d
1 1 0
a a

ax x x c c− − += + = +
− +� , we are  

never allowed to divide by zero. This is a special integral which will be dealt with later. 
 
In a similar way to differentiation, to integrate a sum or difference of terms, we simply 
integrate each term separately: 

 
 
 
 

Note: A constant, a, can be written as 0ax , and so integrating this gives,  
 

0 0 1 d
0 1

a
ax x x c ax c+= + = +

+� . For example 2 d 2x x c= +� . 

�

$5	������@�2 Calculate 2 32 8  dx x x+� . 

 
Following the rule, we have: 
 

2 3 2 1 3 1 3 42 8 2
2 8  d 2

2 1 3 1 3
x x x x x c x x c+ ++ = + + = + +

+ +� . 

 

$5	������@*( Calculate 2

1
 dx x

x
−� . 

 

First we rewrite 2

1
x

x
−  as 

1
22x x−− . Then, following the rule we have: 

 

1 d
1

n na
ax x x c

n
+= +

+�  

( ) ( ) ( ) ( ) ( ) ( )1 2 1 2...  d  d  d ...  dn nf x f x f x x f x x f x x f x x+ + + = + + +� � � �  

��������
It is important not to miss out the constant of 
integration. 
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( )

1 1
12 2 12 2

3
12

3

1 1
 d

1 2 11
2

1
3

2

2 1
3

x x x x x c

x x c

x c
x

+− − +

−

− = − +
− ++

= + +

= + +

�

 

 
 

�

4��	�7�����	����%� 
 
We know that the derivative of a function represents the gradient of the function (at a 
particular point). The integral of a function represents the area under the curve of the 
function. fig. 1.41 shows part of a function ( )f x . The shaded area, i.e. the area bounded 

by the curve the x-axis and the lines x a=  and x b= , is given by: 
 
 
 
 
 

 
 

 

 
 
 
 
 

"��
��@�' Calculate 4 315 16 7 dx x x x+ − +� .�
"��
��@�� Calculate 4 9

1 1
 dx

x x
−� .�

fig. 1.41 

( ) ( ) ( ) d  d  d
b

a

f x x f b x f a x= −� � �  The symbol 
b

a
� means we are integrating 

between two limits, a and b. This method is 
best illustrated by an example.  
 

$5	������@*� Calculate 
10

2

4

1
1 d

3
x x+� . 

 

First we integrate the function 21
1

3
x + , then 

we substitute in the limits. This is usually 
denoted by putting square brackets around the 
integrated function, with the limits at the top 
and bottom of the bracket on the right hand 
side, as follows: 
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This corresponds to the shaded area shown in fig. 1.42, which is 2110 units . 
This type of integral, where we integrate between two limits, is called a definite integral. 
An integral which does not involve limits, like example 1.39, is called an indefinite 
integral. 
 
Note: It is not necessary to add a constant of integration when working with definite 
integrals, as this always cancels out. If we had added a constant of integration when 
calculating example 41, we would have got: 
 

1010
2 3

44

1 1
1 d

3 9
x x x x c� 	+ = + +
 �� 

�  

 
3 310 4

10 4
9 9

c c
� � � �

= + + − + +� � � �
� � � �

 

 
1090 100

110
9 9

c c= + − − = .  

 
The constant of integration always cancels out in this way for definite integrals. 
 

fig. 1.42 

21
1

3
y x= +

1010
2 3

44

1 1
1 d

3 9
x x x x� 	+ = +
 �� 

� . 

 
Next we substitute in the limits. We first 
substitute in 10x =  and subtract from 
this the value of 3x x+  when 4x = , as 
follows: 
 

10 3 3
3

4

1 10 4
10 4

9 9 9
x x

� � � �� 	+ = + − +� � � �
 ��  � � � �
 

 
1090 100

110
9 9

= − = . 

 
So the result is: 
 
10

2

4

1
1 d 110

3
x x+ =�  
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$5	������@*' Calculate 
3

3 2

1

2 4 2 dx x x+ +� . Illustrate the area under the graph of 

3 22 4 2y x x= + +  that this integral represents. 
33

3 2 4 3

11

1 4
2 4 2 d 2

2 3
x x x x x x� 	+ + = + +
 �� 

�  

 
4 3 4 31 4 1 4

3 3 2 3 1 1 2 1
2 3 2 3

� � � �= × + × + × − × + × + ×� � � �
� � � �

 

 
2

78
3

=  (check). Thus, the shaded area in fig. 1.43 is 22
78  units

3
. 

 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 

fig. 1.43 

3 22 4 2y x x= + +

"��
��@��@ Calculate 
2

3 2

1

8 3 4 6 dx x x x− + +� �

"��
��@�* Calculate the shaded area in fig. 
1.44. 
 

 
fig. 1.44 

2 2y x= +

fig. 1.45 

$5	������@*� Consider fig. 1.45. Let us find 
the shaded area, that is, the area bounded by the line 

2 4y x= −  and wholly below the x-axis. First, to find 
the limits of integration, we must calculate where the 
line 2 4y x= −  cuts the x axis. The line 2 4y x= −  
cuts the x-axis when 0y = , i.e. when 2 4 0x − = . 

This occurs when 4 2x = ± = ± . So, the shaded area 
is given by: 
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22
2 3

22

1
4 d 4

3
x x x x

−−

� 	− = −
 �� 
�  

 
8 8

8 8
3 3
� � � �= − − − +� � � �
� � � �

 

 
8 24 8 24

3 3
− − +� �= −� �

� �
 

 
32 2

10
3 3

= − = −  

 
  

����
 
 
 
 
 
 
 
 
 
�

�
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 

����

Notice that the answer is negative. Whenever an integral 
represents an area that is wholly below the x-axis, the 
answer will be negative. 

"��
��@�/ fig. 1.46 shows part of the graph of ( )( ) ( )4 1 5y x x x= + + − . Find 
the area of the shaded region. 
 
              ( )( ) ( )4 1 5y x x x= + + −  

 
 
 

fig. 1.46 
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�� �! �� &2� �, ����� ���) # ��� �! �� &2� �, ����� ���) # ��� �! �� &2� �, ����� ���) # ��� �! �� &2� �, ����� ���) # �����������������������������������������
 
 
 

�
	�� �� � � � � �����
	�� �� � � � � �����
	�� �� � � � � �����
	�� �� � � � � ��������
 
 
"�����	������������	����������

�

Use your calculator to find the values of the functions ( ) ( )sinp x x=  and ( ) ( )cosq x x=  

at 10�  intervals in the range 0 360x≤ ≤� � . Use these results to plot smooth graphs of the 
functions ( ) ( )sinp x x=  and ( ) ( )cosq x x=  in the interval 0 360x≤ ≤� � . Your graphs 
should look like fig. 2.1 and fig. 2.2. 
 

                 
 
 
 
These graphs represent the basic shapes of the functions ( )sin x  and ( )cos x . We have 

plotted the functions in the range 0 360x≤ ≤� � , but these functions are in fact valid for all 
x ∈� . However, we usually consider angles in the range 0 to 360 degrees, for example 
an angle of 370 degrees is in fact an angle of 10 degrees. The graphs of ( )sin x  and 

( )cos x  are shown over a greater domain in fig. 2.3 and fig. 2.4. 
 
Notice that the period of the functions ( )sin x  and ( )cos x  is 360� . Notice that the graphs 

of ( )sin x  and ( )cos x  are quite similar. In fact, they have the same shape (sometimes 
called sinusoidal), they both have a minimum value of -1 and a maximum value of 1. 
Notice that the graph of ( )cosy x=  is symmetrical about the y-axis.  
 

fig. 2.1 fig. 2.2 
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This gives rise to an interesting property of ( )cos x , that is: 
 
cos( ) cos( )x x≡ − . 
 
Which can be seen directly from the graph. Functions that have the property 

( ) ( )f x f x= −  are called even functions. 
 
The graph of ( )siny x=  also has an interesting symmetrical property, that is: 
 

( ) ( )sin sinx x− ≡ − . 
 
This can be seen directly from the graph. Functions that have the property 

( ) ( )f x f x− = −  are called odd functions. 
 

$5	�����'@� Given that 
1

sin 30
2

=� , without using a calculator, find ( )sin 30− �  and 

sin 210� .  
 
With a little thought, and a good sketch of the graph, see fig. 2.5, we can see that, 

 
 
 
 
 
 
 
 
 
 

fig. 2.3 fig. 2.4 

fig. 2.5 

( ) ( ) 1
sin 30 sin 30

2
− = − = −� �  

 

and ( ) ( ) 1
sin 210 sin 30

2
= − = −� � . 
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r 

r 

r 

�
"�����	������"	����
 
 
The function ( ) ( )tanf x x=  has a more unusually shaped graph. This is shown in fig. 2.6. 
 

 
 
 
 
 

 
 
+	��	����	���� 
 

Up until now, we have measured angles in degrees, where one degree is 
1

360
 of a full 

turn. From now on, we will almost exclusively use radian measure.  
 

 
 
 
 
 
 
 
 
 

 

"��
�'@� Given that ( ) 1
cos 60

2
=� , without using a calculator, find ( )cos 240� .�

fig. 2.6 
Note: radian measure used! 

 

Note that, unlike ( )sin x  and ( )cos x , 

( )tan x  is not bounded. For example, as 

90x → � , ( )tan x → ∞ . Notice also that the 

graph of ( ) ( )tanf x x=  repeats itself every 

180� .  
 
The symmetry of the graph leads to the 
identity: 
 

( ) ( )tan 180x x≡ ± �  

"��
�'@' Given that tan 45 1=� , use the symmetry of the graph of ( ) ( )tanf x x=  to 

find the value of tan135�  without using a calculator.�

Consider a circle with an angle θ  subtended by two radii. One 
radian corresponds to the angle which gives the same arc 
length as the radius, as shown in fig. 2.6.  
 
If two radii subtend an angle �, then the arc length, l, is given 
by l rθ= , as shown in fig. 2.7.  
 
We can see therefore, that the circumference of a circle 
divided by the radius of the circle will give the number of 
degrees in a circle, i.e. the number of degrees in a full turn. 

fig. 2.6 
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A

a 

b 

c 

��������

B 

C

 
 
 
�

�

�

�

�
�

$5	�����'@' Convert  a) 45�  into radians  b) 30�  into radians. 
 

a) Now, 180 cπ=� , so 45
4

cπ=� .  

 

b) Now, 1
180

cπ=� , so 
30 1

30
180 6

c
cπ π= =� . 

 
 
 
 

�

"��������+��� 
 
Look at fig. 2.8. There is a relation involving the sine of the angles at A, B and C, with the  
 
 
 
 
 
 
 

                                 and is called the sine rule. 
 
�

�
�

�

fig. 2.7 

The number of degrees in a full circle is therefore 
given by: 
 
Circumference 2

2
Radius

r
r
π π= = , 

 
i.e. 360 2 cπ=� , note a superscript ‘c’  is sometimes 
used to denote ‘radian’.  
 

180 cπ=� �

"��
�'@� Convert 150�  into radians.�

fig. 2.8 

length of the sides a, b and c. The relation is as 
follows: 
 

sin sin sin
a b c

A B C
= =  

It will often be necessary to work with radians. When working with radians on your 
calculator, make sure it is switched to radian mode. 
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B

CA

c 
a 

b 

h 

  X 

4����������
��������+����

�
�

�
�

�
�

�
�
 
 
 
 
 

 
 

 
 
 
 
By constructing a perpendicular form C to AB and giving a similar argument, we can 
deduce that, 
 

sin sin     
sin sin

a b
a B b A

A B
= � = .  

 

But we know from (3) that 
sin sin

a c
A C

= , so,  

 

sin sin sin
a b c

A B C
= = . As required. 

This is the sine rule. It relates the sides of any triangle to sine of its angles, whether the 
triangle is a right-angled triangle or not.  
 
�

�
�

�
�

�
�

�
�

�

fig. 2.9 

Look at fig. 2.9. From this diagram, we can see that, 
 

sin     sin
h

A h c A
c

= � =  ……………………..(1) 

 
We can also see that, 

sin     sin
h

C h a C
a

= � = ………….…………………………(2) 

 
Since (1) = (2), we can see that,  
 

sin sin     
sin sin

c a
c A a C

C A
= � = …………………………..(3) 

 
 
b 
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P 

Q R 

 

27� 

9.2 cm 

8.3 cm 

A 

B 

C 
33� 

30 cm 

20 cm 

$5	�����'@� Solve the triangle in fig. 2.10. (Solve the triangle means find all the 
missing sides and angles) 
 
 
 
 
 
 
 
 
�

�
�

�
�

�
�

�
$5	�����'@* Solve the triangle ABC, where 30 cmAC = , 20 cmBC =  and  

30CAB∠ = � .  
 
First make a rough sketch and mark on the given information, shown in fig. 2.11.  
 
 
 
 
 
 
 
 
 
 
So, the calculator tells us that 48.6B = � . However, this is not the whole story. Look back 
at the graph of ( )sin x , for example fig. 2.5. We can see that there is more than one angle 
that gives a sine of 0.75 (in fact, there are infinitely many such angles). Another such 
angle would be 180 48.6 131.4− =� � �  which we can deduce form the symmetry of the 
graph of ( )sin x . (Another angle which would give a sine of 0.75 is360 48.6 408.6+ =� � � , 

but since the angles in a triangle add up to 180� , this is not a valid consideration).  
 
Let us continue under the assumption that 48.6B = � . Therefore,  
 

( )180 33 48.6 98.4C = − + = � . 
 
Then, 

fig. 2.10 

8.3 9.2 9.2
    sin sin 27

sin 27 sin 8.3
P

P
= � = ×  

 
1  sin 0.503 30.2P −� = = � . 

 
Now, ( )180 27 30.2 122.8Q = − + = � . 
 
So,  
 

8.3 8.3
    sin122.8

sin 27 sin122.8 sin 27
PR

PR= � = ×  

 
  15.4 cmPR� = . 

Using the sine rule,  
 

20 30 20
    sin sin 33 0.363

sin 33 sin 30
B

B
= � = × =  

 
1  sin 0.363 21.3B −� = = � . 

 
fig. 2.11 
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20 20

      sin 98.4
sin 30 sin 98.4 sin 30

  39.6 cm

AB
AB

AB

= � = ×

� =
 

 
But, if we had taken 131.4B = � , then we would have 18.6C = �  and 12.8 cmAB =  
(check). 
 
Both sets of solutions are equally valid. This problem is ambiguous, there are two 
possible solutions. Be aware of this eventuality!  

 
 
 
 

�
"����������+��� 
 
Look at fig. 2.8. There is a relation involving the length of all of the sides and one of the 
angles. The relation is as follows: 
 

 
 
�

4����������
����������+��� 
 
Look back at fig. 2.9. We can see form triangle ABX that, 
 

( )22 2c h AX= + …………………………………………………………………………(1) 
 
And from triangle BCX we can see that, 
 

( )22 2a h CX= +  ………………………………………………………………………...(2) 
 
Rearranging (1) for 2h  and substituting into (2) gives: 
 

( ) ( ) ( ) ( )2 2 2 22 2 2 2    a c AX CX c a AX CX= − + � = + − . 
 
Now, ( ) ( )2 2

AX CX−  is a difference of squares, and so can be factorised as 

( ) ( )AX CX AX CX+ − . So, we have that: 
 

( ) ( )2 2c a AX CX AX CX= + + − ……………………………………….…………….(3) 

"��
�'@* Solve the triangle DEF, where 81E = � , 62F = �  and 4 md = .�

2 2 2 2 cosc a b ab C= + −  and is called the cosine rule. 
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A C 40� 

7 cm 

8 cm 

B 

But: 
 
 AX CX b+ = …………………………………………………………………………(4) 
 
and, 2 2AX CX AX CX CX b CX− = + − = − . But cosCX a C= , so:  
 

2 cosAX CX b a C− = − ………………………………………….……………..…….(5) 
 
Substituting (4) and (5) into (3) gives: 
 

( )2 2 2 cosc a b b a C= + −  
 

2 2 2  2 cosc a b ab C� = + −  as required.  
 
This can be rearranged to give an alternative form for finding an angle given all three 
sides: 

 
 
 
 
 

$5	�����'@� Solve the triangle ABC, where 7 cmAC = , 8 cmBC =  and 40C = � .  
 
First make a sketch and mark on the given information, shown in fig. 2.12. 
 
 
 
 
 
 
 
 
 
 

2 2 28 5.22 7 2 5.22 7 cos A= + − × × ×  
 

2 2 25.22 7 8
  cos       80.4

2 5.22 7
A A

+ −
� = � =

× ×
� . 

 
Therefore, ( )180 40 80.35 59.7B = − + =� � � � . 

2 2 2

cos
2

a b c
C

ab
+ −=  

fig. 2.12 

Using the cosine rule, we have: 
 

( )2 2 28 7 2 8 7 cos 40AB = + − × × ×  
 

  27.20 5.22 cmAB� = = . 
 
Using the cosine rule a second time gives: 

"��
�'@� Solve the triangle XYZ, where 9.5 mXY = , 4 mYZ =  and 7 mXZ = .�
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a 
b 

c 

� 

 

Look back at fig. 2.9. The area of this triangle is 
1
2

bh . But, since sinh a C= , we can 

write the area as: 
 
 
 
 

 
 
�����"��������
����)���
�
��� 
 

Look at fig. 2.13. We can see that sin
b
a

θ = , cos
c
a

θ =  and 
sin

tan
cos

b
c

θθ
θ

= = .  

 
 
 
 
 
 
 
 
 
 
 
From Pythagoras’ Theorem, we have that: 
 

2 2 2b c a+ = . 
 
Dividing throughout by 2a  gives: 
 

2 2

1
b c
a a

� � � �+ =� � � �
� � � �

   or equivalently, 

 
This is an important trigonometric identity.   
You may be asked to prove a trigonometric identity by using the above identities and 
some algebraic manipulation (see example 2.6). As a general rule, you should start with 
the most complicated side of the expression and, by using algebraic manipulation and the 
standard identities above, make it look like the other side of the expression. 

"��
�'@/ Solve the triangle UVW, where 88.3 mVW = , 97 mUV =  and 37U = � .�

1
Area sin

2
ab C=  

This formula allows us to find the area of any triangle given 
two sides and the included angle. 

"��
�'@! Calculate the area of triangle ABC, where 6 cmBC = , 9 cmAC =  and 
30C = � .�

So we have the relationship: 
 
 

sin
tan

cos
θθ
θ

=  

fig. 2.13 

2 2sin cos 1θ θ+ =  

http://www.studyguide.pk
www.studyguide.pk
http://www.studyguide.pk


  

 

69 

 $5	�����'@/ Prove the identity, 
1

sin tan cos
cos

θ θ θ
θ

≡ − . 

 
Now, we should start with the most complicated side, and make it look like the other side. 
Here though, both sides of the identity look equally simple. One obvious thing to do 

would be to rewrite tanθ  as 
sin
cos

θ
θ

. So let us work on the LHS: 

 
sin

LHS sin tan sin
cos

θθ θ θ
θ

= = ×  

 

        
2sin

cos
θ
θ

= . 

 
Now, using the identity, 2 2sin cos 1θ θ+ = , we can see that, 2 2sin 1 cosθ θ= − . So we 
can write: 
 

2 21 cos 1 cos
LHS

cos cos cos
θ θ

θ θ θ
−= = −  

 

        
1

cos RHS
cos

θ
θ

= − = . 

 
So we have shown that the LHS equals the RHS, hence we have proved the identity, 

1
sin tan cos

cos
θ θ θ

θ
≡ − . 

 
 
���%����"��������
����$��	
���� 
 
Trigonometric identities are also useful for solving trigonometric equations. 
 
$5	�����'@! Solve the equation 2sin cos 0θ θ− =  for the range 0 360θ≤ ≤ � . 
 
Rewrite the equation as, 2sin cosθ θ= . Divide both sides by sinθ  to get, 

cos 1
2

sin tan
θ
θ θ

= = . So we have,  

 

"��
�'@� Using the two previously established trigonometric identities and algebraic 

manipulation, prove the identity, 
1 1 1

tan
tan cos sin

A
A A A

+ ≡ × .�
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1
tan     26.6

2
θ θ= � = �  This is the answer that the calculator gives but beware, we 

were asked to look in the range 0 360θ≤ ≤ � . Look back at the graph of tanθ  in fig. 2.6, 

we can see that there is another angle that has a tangent of 
1

 
2

in the given range, and it is 

180 26.6 206.6θ = + =� � � . 
 
So the two answers are 26.6 ,  206.6θ = � � . 
 
$5	�����'@� Solve 22cos 3cos 1 0θ θ− + =  for 0 θ π≤ ≤ . 
 
This is a quadratic equation in cosθ . To make this look like a more familiar form, we 
can make the substitution, cosx θ= . Now the equation becomes: 
 

22 3 1 0x x− + =  
 

which can be factorised as ( )( ) 1
2 1 1 0      or  1

2
x x x x− − = � = = . Now remember that 

cosx θ= , so we have: 
 

1
cos     1.05

2
θ θ= � =    or   cos 1    0θ θ= � = . These are the only solutions for the 

given domain. 
 

 
 

����
����

����
����

����
�
��! "�� � �� �# ��� � �$ �  ������ #�
��! "�� � �� �# ��� � �$ �  ������ #�
��! "�� � �� �# ��� � �$ �  ������ #�
��! "�� � �� �# ��� � �$ �  ������ # ����
�

�
,	.�����)����������
 
Recall the following rules of indices. 
 

� m n m na a a +=  
 � 

m
m n

n

a
a

a
−=  

 

�  

"��
�'@2 Solve 5sin 2cosθ θ=  for 0 2θ π≤ ≤ . Note: this question is set in 
radians.�

"��
�'@�( Solve 22sin 3sin 2θ θ+ =  for values of θ  between 0�  and 360� .�

m
n mna a=
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� ( )nm mna a=  

 
� 0 1a =  

 

� 
1m
ma

a
− =  

 

� 
1
2a a=  

�  
�

�
"�����	������������ 

 
An exponential function is a function where a constant base is raised to a variable 
exponent, for example ( ) 2xf x = . 
 
Make a table of values for ( ) 2xf x =  for 2 5x− ≤ ≤  and use this to plot the function 

( ) 2xf x =  for the given domain. The plot should look like fig. 2.14. 
 

 
 
 
 

 

 
 
 
,��	��
��� 
 
If a is a positive real number other than 1, then the logarithm of x with base a is defined 
by: 
 

fig. 2.14 

( ) 2xf x =
Notice that this graph is strictly increasing. 
This shape of graph is sometimes called 
exponential growth. More generally, the 
graph of ( ) xf x a=  shows exponential growth 

for 1a > , and is sometimes used as a simple 
population model. Exponential growth also 
occurs as the limit of discrete processes such a 
compound interest.  
 
Notice that the graph of  ( ) xf x a=  cuts the y-

axis at 1y = . 
 
The graph of ( ) xf x a=  has the same basic 

shape as fig. 2.14 for all 1a > , but the rate of 
growth increases with increasing a, as 
illustrated in fig. 2.15.  
 

fig. 2.15 

( ) 2xf x =

( ) 3xf x =

( ) 4xf x =
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log       y
ay x x a= ⇔ =   (for every 0x >  and every real number y).  

 
Thus, logarithms are simply an alternative way of writing exponents. 

 
 
 

 

For example the expression 100 10x=  can be written in logarithmic form as 10log 100x = .  
This is a logarithm base 10. Logarithms base 10 are often used and are usually written 
simply as ‘log’ rather than ‘ 10log ’. Whenever you see ‘log’, assume that it is base 10. So, 

we would usually write 100 10     log100x x= ⇔ = .  
 

 
 
 
 
 
 

 
On your calculator, you will notice the button ‘LOG’. We have established that 
100 10     log100x x= ⇔ = . If you press 100 followed by ‘LOG’, your calculator will 
return the answer ‘2’, so we have found that 2x = . Looking back at the original 
expression, 100 10x= , we can now see that 2100 10= . This is a trivial example. Let us 
look at a less trivial case.  
 
$5	�����'@2 Solve for x, 10 150x = . 
 
We can not solve this equation by sight, but we can easily solve it using the idea of 
logarithms. 
 
10 150      log150 2.18x x= ⇔ = = . 
 
"���,	.�����,��	��
��� 

 
�

�
�

�
�

�
�

�
�

�

log       y
ay x x a= ⇔ =  

"��
�'@�� Write the following equations in logarithmic form. 
 
a) 1000 10x=           b) 108 2 y=           c) 729 3x= . 

If x and y are any two positive real numbers, then 
 

� ( )log log loga a axy x y= +  
 

� log log loga a a

x
x y

y
� �

= −� �
� �

 

 
� ( )log logn

a ax n x=   for every real number n. 
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Let us prove the first Law of Logarithms. The others have similar proofs.  
 
Let logap x=  and logaq y= . 
 
Then   and  p qa x a y= = , from the definition of the logarithm. 
 
Now, p q p qxy a a a += = , by the laws of indices. 
 
So, p qxy a +=  which can be written in logarithmic form as, 
 
loga xy p q= + . 
 
But since log   and  loga ap x q y= = , the equation above can be written as: 
 

( )log log loga a axy x y= +  as required. 

�
���%����$��	
��������
������������� 
 
We solved an equation of this form in example 2.9, however, this was an artificial 
example and could not have solved in this way if the ’10’ had been something else, like a 
‘4’.   
 
Supposed we are asked to solve the equation 3 4x =  for x. The method we would use is to 
‘take logarithms’ of both sides of the equation. Taking logarithms of both sides of the 
equation does not change the equation, in the same way that adding 2 to both sides of an 
equation does not change the equation. We can take logarithms of both sides to any base, 
but since we have a ‘LOG’ (base 10) button on our calculator, it seems practical to 
choose to take logs to base 10. 
 
So, given 3 4x = , we take logarithms base 10 of both sides of the equation: 
 

( )log 3 log 4x = . 

 
From the laws of logarithms, this is equivalent to: 
 

log 4
log 3 log 4      1.26

log3
x x= � = = . 

 
So we have found that 1.26x = . 
 
$5	�����'@�( Solve the equation 2 36 29x+ =  for x. 
 
Taking logarithms base 10 of both sides of the equation gives: 

http://www.studyguide.pk
www.studyguide.pk
http://www.studyguide.pk


  

 

74 

 

( ) ( )2 3log 6 log 29      2 3 log 6 log 29x x+ = � + =  

 
log 29 1 log 29

  2 3       3
log 6 2 log 6

x x
� �

� + = � = −� �
� �

 

 
  0.56x� = −  

 
 
 
 
 
 
 
 

 
 

�
��&�' ( �� ) �# ��� � �&����#�
��&�' ( �� ) �# ��� � �&����#�
��&�' ( �� ) �# ��� � �&����#�
��&�' ( �� ) �# ��� � �&����# ����
 
 
��������� 
�
#�����
���� 
 
A sequence is a list of numbers which follows a mathematical pattern. For example: 
 
1, 3, 5, 7, 9, 11, … 
 
is a sequence. Each number in the list is called an element of the sequence. 
 
A sequence whereby there is a constant difference between consecutive terms is called an 
arithmetic progression (AP). The difference between consecutive terms of an AP is 
called the common difference and is often denoted by d. The example above is an 
arithmetic progression. The common difference of the above sequence is 2. 
 
A sequence whereby each term is found by multiplying the previous term by a given 
factor is called a geometric progression (GP). For example: 
 
1, 2, 4, 8, 16, 32, … 
 
is a geometric progression. The factor by which each term is multiplied to generate the 
next term is called the common ratio and is often denoted by r. The common ration of 
the above sequence is 2.  
 
�

"��
�'@�' Solve the following equations for x: 
 

a) 2 1
3

2
x =  b) 212 3x x= . 
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"�����	�
�������	��������� 
 
Sometimes, a sequence, 1 2 3,  ,  ,...a a a  may be defined by a formula for the nth term. 
 
$5	�����'@�� The nth term of a sequence is given by 2 3na n= − . Write down the 
first 6 terms of the sequence. Is the sequence an arithmetic progression or a geometric 
progression? What is the common difference / common ratio of the series? Find the value 
of n for which 163na = . 
 
We are asked for the first 6 terms. We find these by simply inserting 1,2,3,4,5,6 for n into 
the formula for the nth term. To find the 1st term, we insert 1n =  into the formula for the 
nth term. Doing this gives us: 

( )1 2 1 3 1a = × − = − . 
 
To find the 2nd term, we insert 2n =  into the formula. Doing this gives us: 
 

( )2 2 2 3 1a = × − = . 
 
To find the 3rd term, we insert 3n =  into the formula. Doing this gives us: 
 

( )3 2 3 3 3a = × − = . 
 
Continuing in this way, we find the first 6 terms to be: 
 

1,  1,  3,  5, 7, 9− . 
 
To determine whether this sequence is arithmetic or geometric, we subtract consecutive 
terms to see if there is a common difference. If not, try dividing consecutive terms of the 
sequence to see if there is a common ratio.  
 
In this case, we can see that there is a common difference of 2 between each of the terms. 
Therefore the sequence is an arithmetic progression with common difference 2.  
 
Next we are asked to find the value of n for which 163na = . This is a matter of simple 
substitution. We want: 
 

2 3 163na n= − = , so: 
 

163 3
83

2
n

+= = . 

 
So the 83rd term is 163. 
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������ 
 
A series is the sum of the terms of a sequence. Like a sequence, a series may be finite or 
infinite. A series is called arithmetic if its terms follow an arithmetic progression. A 
series is called geometric if its terms follow a geometric progression. 
 
�='=�=A=�((8B 
 
Let us take a brief detour to consider a particular problem, which will help us in the next 
section. 
 
What is 1 2 3 ... 100+ + + + ? This seems like a difficult problem at first sight, but with a 
little ingenuity there is a simple, short solution. There is more than one way of tackling 
this problem, but let us take the following approach. 
 
Let. 1 2 3 ... 100S = + + + + . We can rewrite this as: 
 

( ) ( ) ( ) ( )1 1 1 1 2 1 3 ... 1 99S = + + + + + + + + + ………………………………………….(1) 
 
We can reorder this sum as: 
 

( ) ( ) ( ) ( )1 99 1 98 1 97 1 96 ... 1S = + + + + + + + + + ……………………………………..(2) 
 
 
 

( ) ( ) ( ) ( )1 1 1 1 2 1 3 ... 1 99+ + + + + + + + +  
 
 
( ) ( ) ( ) ( )1 99 1 98 1 97 1 96 ... 1+ + + + + + + + + �
�
So, (1) + (2) gives: 
 

( ) ( ) ( ) ( ) ( ) ( )2 1 1 99 1 1 1 98 1 2 1 97 ... 1 99 1S � 	 � 	 � 	 � 	= + + + + + + + + + + + + + +�  �  �  �  

 
  2 101 101 101 ... 101S� = + + + +   (100 lots of 101) 

 
100 101

  5050
2

S
×

� = = . 

"��
�'@�� Consider the sequence 
1

9, 3, 1, 
3

. Is this sequence an AP or a GP? Write 

down the common difference / ratio. What is the 6th term? �

Notice that if we add each of the terms 
in (1) and (2) as indicated by the arrows 
opposite, each add to 101 
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So, we have found that 1 2 3 ... 100 5050+ + + + = . 
 
It is reported that Carl Friedrich Gauss (1777 – 1855) solved this problem when presented 
with it at school at the age of seven. He went on to become one of the greatest 
mathematicians of all time. 
�

�������	��4��
���
������������
 
Consider a general arithmetic sequence with first term a, common difference d and 
consisting of n terms. This can be represented by: 
 

( ), ,  2 ,  3 , ... , 1a a d a d a d a n d+ + + + − . 
 
Notice that the nth term is ( )1a n d+ − . 
 
The sum of these terms is given by: 
 

( ) ( ) ( ) ( )( )2 3  ... 1nS a a d a d a d a n d= + + + + + + + + + − …………………………(1) 
 
This can be rewritten as: 
 

( )( ) ( )( ) ( )( )1 2 3 ...  nS a n d a n d a n d a= + − + + − + + − + + ………………………..(2) 
 
Adding (1) and (2) gives:  
 
 

( )( ) ( )( ) ( )( ) ( )( )2 2 1 2 1 2 1 ... 2 1nS a n d a n d a n d a n d= + − + + − + + − + + + −  

 
      ( )( )2 1n a n d= + −  

 

( )( )  2 1
2n

n
S a n d� = + − . 

 

�

�
�

For an arithmetic sequence with first term a and common difference d, the sum of the first 
n terms is given by: 
 

( )( )2 1
2n

n
S a n d= + − . 
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$5	�����'@�' Calculate the sum of the first 250 natural numbers. 
 
So, we are looking for the value of 1 2 3 ... 250+ + + + . This is an arithmetic series with 
first term 1 and common difference 1. The number of terms in the series is 250. We use 
the formula above with,  
 

1, 1, 250a d n= = = . 
 
Substituting the values in gives: 
 

( )( )250
1 2 3 ... 250 2 1 250 1 1

2
+ + + + = × + − ×  

 
  1 2 3 ... 250 31375� + + + + = .                       

 
$5	�����'@�� The sum of the series 2 5 8 11 .... m+ + + + +  is 6370. How many terms 
does this series have? What is the value of m? 
 
This is an arithmetic series. We are told that 2 5 8 11 .... 6370m+ + + + + = . We can see 
that the first term is 2 and the common difference is 3. We do not know how many terms 
there are in the sequence, let us say that there are n terms in the sequence.  
 
So we have that, 2, 3a d= =  and n is unknown. We also know that the sum of the first n 
terms, nS , is 6370. Substituting these values into the formula gives: 
 

( )( ) ( )3
6370 2 2 1 3       6370 2 1

2 2
n n

n n n= × + − × � = + − . 

 
Multiplying throughout by 2 and expanding the bracket gives: 
 

2 212740 4 3 3       3 12740 0n n n n n= + − � + − = . This quadratic equation in n factorises 
to: 
 

( ) ( ) 196
3 196 65 0        or  65

3
n n n n+ − = � = − = . 

 
Since n, the number of terms in the series, cannot be negative, we must have that 65n = , 
i.e. there are 65 terms in the series. 
 
The first term is 2. Each subsequent term has 3 added on to the previous term. m is the 
65th term, therefore: 
 

( )2 3 65 197m = + × = . 
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�

�
 
 
 

�

�������	������
������������ 
 
Consider a general geometric sequence with first term a, common ratio r and consisting 
of n terms. This can be represented by: 
 

2 1,  ,  ,  ..., na ar ar ar − . 
Notice that the nth term is 1nar − . 
 
The sum of these terms is given by: 
 

2 1+ ... + n
nS a ar ar ar −= + + ……………………………………………………………(1) 

 
Multiply (1) throughout by r: 
 

2 3 + ... + n
nrS ra ar ar ar= + + …………………………………………………………..(2) 

 
Subtracting (1) from (2) gives: 
 

n
n nrS S ar a− = −  

 
( ) ( )  1 1n

nS r a r� − = −  

 

( )1
  

1

n

n

a r
S

r

−
� =

−
 

 

 
 
$5	�����'@�*�Use the formula above to calculate 2 4 8 16 32 ... 256+ + + + + + . 

"��
�'@�* Calculate the sum of the first 100 odd numbers.�

"��
�'@�� Calculate the sum of the series 100 85 70 55 ... 80+ + + + − .�

For a geometric sequence with first term a and common ratio r, the sum of the first n 
terms is given by: 
 

( )1
  

1

n

n

a r
S

r

−
� =

−
. 
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This is a geometric series with first term 2 and common ratio 2 consisting of 8 terms. So 
we have, 2,  2,  and 8a r n= = = . Substituting these values into the formula we have: 
 

( )8

8

2 2 1
510

2 1
S

−
= =

−
. 

 

 

 
 
����
��)�����
�����	������
������������ 
 
Recall that the sum of the first n terms of a geometric sequence is given by: 
 

( )1

1

n

n

a r
S

r

−
=

−
. 

 
What happens to this quantity as n gets very large?  
 
If r is greater than 1, then as n gets very large, nr  gets very, very large. If, on the other 
hand, r is greater than 0 but less than 1 (a fraction), then as n gets very large, nr  gets very, 
very small. So, for r greater than 0 but less than 1, the term nr  becomes negligible for 
large n. In fact, this is also true if r is less than 0 but greater than -1. In other words, if the 
size of r is greater than 0 but less than 1 (ignoring the sign), then nr  approaches 0 as n 
approaches infinity. We use the symbol, 1r < , to denote that the size of r is less than 1, 

ignoring the sign. 1r <  is equivalent to 1 1r− < < . 
 
If a series gets arbitrarily close to a given value, l, as the number of terms increases to 
infinity, we say that the series converges to l. 
 
A geometric series, 2 1+ ... + na ar ar ar −+ + , converges when 1r < .  

"��
�'@�/�Consider the geometric series, 
1

4 6 9 13 ...
3

+ + + + . What is the common 

ratio for this series? Using the formula, find the sum of the first 25 terms correct to 6 
significant figures.�

"��
�'@�!�Consider the geometric series, 
1 1

2 1 ...
2 4

+ + + + . What is the common 

ratio for this series? What is the sum of the first 15 terms to five significant figures? 
(Does this series ever reach 4?)�
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The limit 
1

a
r−

 is known as the sum to infinity, and is denoted S∞ . 

 
$5	�����'@�� Find the sum to infinity of the series, 100 50 25 ...+ + +  
 

We have 100a =  and 
1
2

r = . Substituting into the formula for the sum to infinity we have: 

 
100

200
1

1
2

S∞ = =
−

. 

 
 
 
 
 

 
����	�0�
	
��� 
 
Rather than writing lengthy sums, for example 1 2 3 ... 100+ + + + , we have a compact 
notation that is often used, the so called sigma notation. � is the Greek capital letter 
sigma. It used in mathematics to stand for a ‘sum’. 
 
For example,  
 

100

1

1 2 3 ... 100
n

n
=

+ + + + =�
  

 
 
 
So, for example, we can write: 
 

10
10

1

2 4 8 16 ... 2 2n

n=

+ + + + + =� . 

 

   as   
1n

a
S n

r
→ → ∞

−
  provided 1r < . 

"��
�'@���Find the sum to infinity of the series 
2 3

1 1 1
...

3 3 3
� � � �+ + +� � � �
� � � �

�

First term 

Last term 

General term 
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2

1

1 4 9 16 25 ...
n

n
∞

=

+ + + + + =�  

 

 

����
�
��� � �� ����� � �* ( � ) ��� � #�
��� � �� ����� � �* ( � ) ��� � #�
��� � �� ����� � �* ( � ) ��� � #�
��� � �� ����� � �* ( � ) ��� � # ����
 
 
,	.�����)�������
 

�  m n m na a a +× =  
 

� 
m

m n
n

a
a

a
−=  

 
 
 
"�	������	
��������
�����	�����8�
9���
�
Recall from Chapter 1 the section on ‘Graph Transformations’. We saw that: 
 

� The transformation ( )    ( )f x f x a→ ±  is a translation by a units parallel to the y-
axis in the positive direction. 

 
� The transformation ( )( )    f x f x a→ �  is a translation by a units parallel to the 

x-axis in the positive/negative direction. 
 

� The transformation ( )( )    f x af x→  is a stretch, parallel to the y-axis, by a 
factor a.  

 
� The transformation ( )( )    f x f ax→  is a stretch, parallel to the x-axis, by a factor 

1
a

.  

 

"��
�'@�2 Write down the following series in sigma notation. 
 

a) 12

1 1 1 1
...

2 4 8 2
+ + + +   b) 3 5 7 9 11 ...+ + + + +  c) 31 8 27 64 ... m+ + + + +  

1ma
m

− =
1
2a a=

m
n mna a=

0 1a =
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$5	�����'@�/ Make a sketch of the function 
( ) sinf x x=  for the domain 0 2x π≤ ≤ . On the 

same graph, sketch ( )2 sin 2f x x= . 
 
The sketches are shown in fig. 2.16. Notice that they 
both have the same basic shape and they both start 
and end at the same points. Notice also that the 
point ( ),0π  on the original graph, sin x is 
unaffected by thr transformation. The graph of 

( )2 sin 2f x x=  is similar to the graph of 

( ) sinf x x= , but it has been ‘compressed’ by a  
factor of 2, or stretched by a factor of ½ parallel to the x-axis.  
 
This has the effect of halving the period. ( ) sinf x x=  has a period of 2π , while 

( )2 sin 2f x x=  has a period of π .  
 
$5	�����'@�! Make a sketch of the function ( ) cosf x x=  for the domain 

0 2x π≤ ≤ . On the same graph, sketch cos
2 2

f x x
π π� � � �+ = +� � � �

� � � �
. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

fig. 2.16 

fig. 2.16 

The graphs are shown in fig. 2.16. Remember 

that the transformation ( )    
2

f x f x
π� �→ −� �

� �
 

has the effect of moving the graph of ( )f x  

parallel to the x-axis 
2
π

 units in the positive 

direction. 
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�
��� ������� ������ ��
��� ������� ������ ��
��� ������� ������ ��
��� ������� ������ � ����
 
 

Recall From Chapter 1 that, if ny ax=  then 1d
d

ny
nax

x
−= , which is valid for all ,  a n∈� . 

Also recall the laws or indices from section 2.2.  When differentiating a function, we 

always aim to write each term of the function in the form nax  or 
m
nax , where the index 

fig. 2.17 

$5	�����'@�� Make a sketch of the 
function 2xy =  for the domain 4 4x− ≤ ≤ . On 
the same graph, sketch 2 xg −= . 
 
We have seen the graph 2xy =  before. We 
have not come across the transformation 

( )( )    f x f x→ −   before. This is not a stretch 
or a translation. It is in fact a reflection in the 
y-axis. Also note that the transformation 

( )( )  f x f x→ −  is a reflection in the x-axis. 

2xy =
2 xg −=

"��
�'@�2 Make a sketch of the function 2y x= . On the same set of axes, sketch 

the functions 22p x=  and 21
2

q x=  stating clearly how the curves relate to each other.�

"��
�'@'( Make a sketch of the function 3xy = . On the same set of axes, sketch the 
function 3xp = − stating clearly how the curves relate to each other. 

"��
�'@'� Make a sketch of the function ( ) sinf x x=  for the domain 0 2x π≤ ≤ . 

On the same set of axes, sketch the function sin
2 2

f x x
π π� � � �+ = +� � � �

� � � �
stating clearly 

how the curves relate to each other.�
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and / or the coefficient may be positive or negative. For example, when asked to 

differentiate 
1
x

, we first write this as 1x− .  

 

$5	�����'@�2 Given that 
3

x x
y

x

+= , find 
d
d
y
x

. 

 
First we need to rearrange y into a more convenient form to work with. 
 

1
3 1 32 1
2 2 2

3 33
2 2

x x x x
y x x

x x x

− −+= = + = +  

     
1

12x x
− −= + .  

 
 Now we can easily differentiate this term by term: 
 

3
22

23

d 1 1 1
d 2 2

y
x x

x xx

− −= − − = − − . 

 

So, 
d
d
y
x

= 23

1 1

2 xx
− − . 

 

$5	�����'@'( Differentiate ( )
3

2
2

2 x
f x x x

x x
= + − . 

 
First we need to rearrange y into a more convenient form to work with. 
 

( ) 1
2

3 13
2 2 2 2

2

2
. 2 .

x
f x x x x x x x x

x x

−−= + − = + −  

 

         
3

22 2x x x−= + − .   Now we can easily differentiate this term by term: 
 

( )
1

123 3 4
' 4 1 1

2 2
f x x x x

x
−= − − = − − . 

 

So, ( ) 3 4
' 1

2
f x x

x
= − − . 

 
 
 "��
�'@'' If ( )2

2y x= + , calculate 
d
d
y
x

.�
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����
�
���� �� ����� ��
���� �� ����� ��
���� �� ����� ��
���� �� ����� � ����
 
 

Recall from Chapter 1 that 1 d
1

n na
ax x x c

n
+= +

+� , which is valid for all ,  a n∈� . As in 

the previous section on differentiation, we also need to have the laws of indices at the 
front of our minds when working on integration problems. Also as in the previous section, 
when integrating functions we always aim to write each term of the function in the form 

nax  or 
m
nax , where the index and / or the coefficient may be positive or negative. 

 

$5	�����'@'� Calculate the indefinite integral, 
3

3
 d

x x
x

x

+
� . 

 
We can see that, 
 

3

3

x x

x

+ =
71
62x x

−−
+ . (check) So,  

 
713
62

3
 d  d

x x
x x x x

x

−−+ = +� �  

 

                    
11
62

6

6
2 6 2x x c x c

x

−
= − + = − + . 

 

So, 
3

3
 d

x x
x

x

+ =� 6

6
2 x c

x
− + . 

"��
�'@'� If ( ) 1x
f x

x
+= , calculate ( )'f x  and ( )''f x .�

"��
�'@'* Sketch a graph of the function ( ) 1
f x

x
= . Calculate the gradient of the 

tangent to this function at the point 2x = − .�

"��
�'@'� Calculate the indefinite integral, ( )2
2  dx x+� . Hence calculate the definite 

integral ( )
1

2
2  dx x+� .�
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x f(x) 

����
�� �! �� &2� �, ����� ���) # ��� �! �� &2� �, ����� ���) # ��� �! �� &2� �, ����� ���) # ��� �! �� &2� �, ����� ���) # �����������������������������������������

 
 
 

�
	�� � �� ����� � �* ( � ) ��� � #�
	�� � �� ����� � �* ( � ) ��� � #�
	�� � �� ����� � �* ( � ) ��� � #�
	�� � �� ����� � �* ( � ) ��� � # ����
 
 
#�����
�������	����
��� 
 
So far we have discussed functions in general terms without specifying exactly what a 
function is. Before we give a formal definition of a function, let us introduce some new 
language and concepts concerning functions. 
 

Functions are sometimes called ‘mappings’, and we may think of a function as a mapping 
from one set to another. This is illustrated below for the function ( ) 2f x x= + . 
 

 
�

�
�

#��	���	����	��� 
 
The set of all numbers that we can feed into a function is called the domain of the 
function. The set of all numbers that the function produces is called the range of a 
function. Often when dealing with simple algebraic function, such as ( ) 2f x x= + , we 
take the domain of the function to be the set of real numbers, � . In other words, we can 
feed in any real number x into the function and it will give us a (real) number out. 
Sometimes we restrict the domain, for example we may wish to consider the function 

( ) 2f x x= +  in the interval 2 2x− ≤ ≤ .  
 

 
-1 1 

0 2 

1 3 
4 6 

f 
For example, f  ‘sends’ -1 to 1 (or -1 
is mapped to 1),  f  ‘sends’ 4 to 6 (or 
4 is mapped to 6) etc.  
  We say that ‘1 is the image of -1 
under f’, ‘6 is the image of 4 under  
f ‘ etc. 
 

fig. 3.1 
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Consider the function 2( )f x x= . What is the range of ( )f x ? Are there any restrictions 
on the values that this function can produce? When trying to work out the range of a 
function it is often useful to consider the graph of the function, this is shown in fig. 3.2. 

We can see that the function only gives out 
positive numbers ( 2x  is always positive for 
any real number x). There are no further 
restrictions. We can see that f  can take any 
positive value, therefore the range of f  is the 
set of all positive numbers, we may write 

( ) 0f x ≥ .  
 
 
 
 

 
�
3��C
�C��������
�����

�
When each of the elements of the domain is mapped to a unique element of the range, 
under a mapping, the mapping is said to be one-to-one. When two or more elements of 
the domain are mapped to the same element of the range under a mapping, the mapping is 
said to be many-to-one. Below are two examples. The function f  is one-to-one, the 
function g  is many-to-one. 
 
 

 
 
 
 
 
 
�

�

f g

1 
 
2 
 
3 
 
4 
 
5 

2 
 
4 
 
6 
 
8 
 
10 

1 
 

4 
 

2 
 

5 
 

9 

1 
 
 
 

7 
 
 
 

2 

Domain Domain 

 

2( )f x x=

fig. 3.2 

Range Range 

fig. 3.3 
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4���	���	���6�	����5��������������
����B 
 
We need to define more precisely what we mean by a ‘function’. We can define a 
function as a rule that uniquely associates each and every member of one set with a 
member or members of another set. This means that every element of the domain is 
mapped to an element of the range such that the image of any element in the domain is 
unique. In other words, each and every element of the domain must be mapped to one 
and only one element of the range.  
 
For example, consider the expression y x= ± . This is plotted in fig 3.4. 
 

  
 
 
 

 

1. ( )f x  as shown in the graph in  fig. 3.5. 
 
 
 
 
 
 
 
 
 

 
 
2. 2 2 36x y+ = . 
 
3. p as defined in fig 3.6. 
 
4. ϕ  as defined in fig 3.7. 

fig. 3.4 

Notice that any value of x in the domain, except 0x = , 
(i.e. any positive real number) is mapped  to two 
different values in the range. Therefore y x= ±  is 
not a function.  
 

fig. 3.5 

"��
��@���Decide if the following (1. –  4.) are functions. Justify your answers. In 
the cases that are functions, state the domain and the range. �
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           DOMAIN   RANGE 
 
 
 

 
       DOMAIN      RANGE 
 
 
 
 
�������
����������
���� 
 
Consider the function, ( ) ( )2

2g x x= − . If we were given a set of numbers and asked to 
perform the function g on each of them, we would have to carry out two separate 
calculations on any one of the given numbers; first we would have to subtract two from 
the number, then we would square the result. Thus, we may think of the function g as two 

functions in one. g is composed of the functions ( ) 2p x x= −  and ( ) ( )( )2
q x p x= . We 

say that g is a composite function, and we write ( ) ( ) ( )g x q x p x= � , or simply g p q= � . 
 

�
�

1 
 
3 
 
5 
 
7 

4 
 
7 
 
3 
 
8 

p 

fig. 3.6 

6 
 
3 
 
2 
 
7 

6 
 
3 
 
2 
 
7 

ϕ

fig. 3.7 

Notice that when calculating g p q= � , we first perform q and then perform 
p on the result. 
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��������

�

$5	������@� Work out f g�  given that ( )f x x=  and ( ) 2 7g x x= + .�
 
f g�  means, first perform the function g and then perform the function f on the result. So 

given any number, the effect of f g�  is to multiply it by two, add 7 and then find the 
square root of the result, i.e.: 
 

2 7f g x= +� . 
 
$5	������@' Given that sin 2f x=  and 2g x= , find f g�  and g f� . 
 
Given any real number, the composite function f g�  has the effect of first squaring the 
number and then finding the sine of two times the result, i.e.: 
 

( )2sin 2f g x=� . 

 
Given any real number, the composite function g f�  has the effect of first finding the 
sine of two times the number and then squaring the result, i.e.: 
 

( )( )2
sin 2g f x=�    or, in more conventional notation,    ( )2sin 2g f x=� . 

 

$5	������@� If ( ) 1
p x

x
=  and ( ) 4 8q x x= − , find suitable domains for the 

composite functions p q�  and q p� . 
 

Now, 
1

4 8
p q

x
=

−
� . The important thing to remember here is that we cannot divide by 

zero, so we cannot have that 4 8 0x − = , i.e. we cannot have that 2x = . All other real 
numbers are valid as the domain of p q� , so we have that the domain of p q�  is x ∈� , 

2x ≠ . 
 

4
8q p

x
= −� . All real numbers except 0x = are valid for this composite function, i.e. the 

domain is x ∈� , 0x ≠ . 
 

 
 
 

g p q= �  is sometimes written as ( )g pq x= . This does not mean that we 
multiply the functions p and q together, it is simply an alternative notation for 
g p q= � . 

"��
��@' If ( ) 5f x x= +  and ( )g x x= + , find f g�  and g f� .�
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�
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�������	��� 
 
Consider the simple, linear function ( ) 3 27f x x= − . If we feed 2x =  into this function, 

we get out ( )2 21f = − . Suppose that we are told that the function has produced the 
number 9, but we do not know what input produced this number. We can easily work out 
the input number: 
 

( ) 9 27
3 27 9      12

3
f n n n

+= − = � = = . 

 
If we know the output of a given function and we require the input of the function, we 
can find it by using the inverse function.  
 
We have that, 
 

( ) ( ) 27
3 27      

3
f x

f x x x
+

= − � = ………………………………………………….(†) 

 
Now, given any output, ( )f x , we can always find the input, x, using the above formula. 
The above formula reverses the effect of the original function. This is called the inverse 
function. We denote the original function by ( )f x  and we denote the inverse function by 

( )1f x− . We usually replace ‘x’ with ‘ ( )1f x− ’ and ‘ ( )f x ’ with ‘x’ in (†) so that we have: 
 

( )1 27
3

x
f x− += . 

 
We can think of a ‘function machine’ which takes an input, performs the function on it 
and produces an output. The inverse function machine takes the output from the original 
function and gives us the original input number, as illustrated in fig. 3.8. 

"��
��@� If ( ) 2 4f x x= −  and ( ) 1
g x

x
= , find suitable domains for the composite 

functions f g�  and g f� .�

"��
��@* If ( ) 2f x x= −  and ( ) 2g x x=  and ( ) 1
h x

x
= , find h f g� � .�
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So, we can see that the set of all inputs for ( )f x , which we call the domain of ( )f x , 

becomes the set of all outputs for ( )1f x− , which we call the range of ( )1f x− .  
 
$5	������@*�If ( ) 2f x x= + , find ( )1f x− . On the same set of axes, plot ( )f x  and  

( )1f x− . What is the relationship between the two graphs? 
 
Let ( )12      2      2y x x y f x x−= + � = − � = − . 
 
The plots of ( )f x  and ( )1f x−  are shown in fig. 3.9. 
 

 
 
 
 
To illustrate why many-to-one functions are not invertible, consider the many-to-one 
function θ  as illustrated in fig. 3.10. 
 

fig. 3.8 

2 ( ) 3 27f x x= − -21 

OUTPUT 

INPUT 

INPUT -21 2 

OUTPUT 

( )1 27
3

x
f x− +=

The notation ( )1f x−  simply stands for the inverse function of ( )f x . It does 

NOT mean ( ) ( )
1 1

f x
f x

− =  

fig. 3.9 

( ) 2f x x= +

( )1 2f x x− = −

We can see from fig. 3.9 that the graph of ( )1f x−  

is a reflection of the graph of ( )f x  in the line 
y x= . 
 
In fact, this is a general result for any invertible 
function (a function that has an inverse). Note that 
not all functions are invertible. Only one-to-one 
functions are invertible.  
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           DOMAIN   RANGE 
 
 
 
 

 
           RANGE   DOMAIN 
 
 
 

 
 
 
 
 

1 
 
2 
 
5 
 
9 

4 
 
1 
 
3 
 
8 

� 
The inverse ‘function’ is illustrated in 
fig. 3.10. We can see that 1θ −  is not a 
function, as it does not satisfy the 
definition. For example, 8 in the 
domain is sent to both 5 and 9 in the 
range, which is not allowed.  
 
We conclude, therefore tat only one-
to-one functions are invertible.  
 
$5	������@* If ( ) 3 5f x x= − , 
find the inverse function, ( )1f x− . On 
the same set of axes, plot ( )f x  and  

( )1f x− . 
 

Let 3 5y x= − , then 
5

3
y

x
+=  which 

means that ( )1 5
3

x
f x− += .  The 

graphs of ( )f x  and ( )1f x−  are 
shown in fig. 3.11. 
 

1 
 
2 
 
5 
 
9 

4 
 
1 
 
3 
 
8 

�
-1 

fig. 3.10 

fig. 3.11 

( )f x

( )1f x−

"��
��@� The function ( ) 2 6
3
x

f x
x

−=
+

 

with domain, 3x > −  is plotted in fig. 
3.12. Calculate the formula for the 
inverse function, ( )1f x− . State the 

domain for which ( )1f x−  is defined. 
Use fig. 3.12 to help you sketch the 
graph of ( )1f x−   stating clearly where 
the graph cuts the x and y axes.  

"��
��@/�Can you think of a function which is its own inverse? Can you think of 
two?�

http://www.studyguide.pk
www.studyguide.pk
http://www.studyguide.pk


  

 

95 
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2 3 1− = , 0 5 5− = , 2 2− = , 1 7 8+ = . The modulus sign,  indicates that we take the 

absolute value of the expression inside the modulus sign, i.e. all values are positive. We 
can define: 
 

for  0
for 0

x x
x

x x

≥�
= �− <�

 

 
Let us consider the graph of y x= . As we have said, x  is always positive, so the graph 

of y x=  cannot exist below the x-axis. For positive x, the graph of y x=  is the same as 

the graph of y x= ; but for negative x, the graph of y x=  is the line y x= − . This is 
illustrated in fig. 3.13. 
 

 
 

fig. 3.12 

( ) 2 6
3
x

f x
x

−=
+

Suppose we have a function, ( )f x , 
and we have calculated the inverse 
function, ( )1f x− . It is clear that if 
we perform the function f on any 
number, followed by the inverse 
function, 1f − , we will have the 
original number we started with. In 
mathematical language, 

( ) ( )1f x f x x− =� , or, 

( )( )1f f x x− = . To see this in 

action, verify for example 3.4. 

y x=

fig. 3.13 

Note that the graph of y x=  is similar to 
the graph of y x=  except that the negative 
region of the graph is reflected in the x-
axis.  
 
In general, the graph of ( )y f x=  is 

similar to the graph of ( )y f x=  except 
that the negative region of the graph is 
reflected in the x-axis.  
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$5	������@� Sketch the graph of 
1

4
2

y x= − − . State where this graph cuts the y-

axis.  
 

We begin by sketching the graph of 
1

4
2

y x= − − , as shown in fig. 3.14. 

 

   
 
 
 
The portion of the graph below the x-axis is reflected in the x-axis to give us the graph of 

1
4

2
y x= − − . This reflected line has the equation 

1 1
4 4

2 2
y x x� �= − − − = +� �

� �
. The 

complete graph of 
1

4
2

y x= − −  is shown in fig. 3.15.  

 

The graph of 
1

4
2

y x= − −  cuts the y-axis when 
1

4
2

y x= +  cuts the y-axis, i.e. at 4y = .  

 
$5	������@/ Sketch the graph of 2 5y x= − . State where 2 5y x= −  cuts the y-axis. 

 
We start by making a sketch of the graph 2 5y x= − , shown in fig. 3.16. The negative 

region of the graph is reflected in the x-axis to give the complete graph of 2 5y x= − , as 

shown in fig. 3.17. The reflected portion of the graph has equation 

( )2 25 5y x x= − − = − + , and cuts the y-axis at 5y = .  

 
 

fig. 3.14 

1
4

2
y x= − −

fig. 3.15 

1
4

2
y x= − −

1
4

2
y x= − −

1
4

2
y x= +
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$5	������@! Solve the inequality 3 3 4x − < . 
 
 
 
 
 
 
 
 
 
 
 
 
 

fig. 3.16 fig. 3.17 

"��
��@� On the same set of axes, sketch the graphs of 1
1

2
2

y x= +  and 

2 2 7y x= − . Hence solve the equation 
1

2 2 7
2

x x+ = − . �

"��
��@!�Sketch siny x=  for xπ π− ≤ ≤ . 

"��
��@2�Given that ( ) 3 146f x x= − , solve the equation ( ) 1f x = . Hint: a sketch 

may be useful.�
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Our first task is to sketch 3 3y x= − , this is shown in fig. 3.18. 
 

 
 
 

1 1
2

3 3
x− < < . Notice that the points 

1
2

3
x =  and 

1
3

x = −  are not included, as the original 

inequality is ‘strictly less than’. The required region is shaded in fig. 3.18. 
 

 
 
���6��	
����������	����	��"�	������	
����  
 
Recall the sections on ‘graph transformations’ from Chapters 1 and 2. In previous 
sections, we have considered the effect of one single transformation on a function. We 
can perform more than one transformation on a function as illustrated in example 3.9. 
 
$5	������@2�By performing transformations of the graph of 2y x= , sketch the graph 

of ( )2
2 5y x= − − . We can easily sketch the graph of 2y x= , which is shown in fig. 3.19. 

We then perform the transformation ( )( )    2f x f x→ −  which, as we have seen from 
Chapter 1 is a translation parallel to the x-axis by 2 units in the positive direction. This 
gives us the graph of ( )2

2y x= − , which is shown in fig. 3.20. Finally, we take the graph 

of ( )2
2y x= −  and perform the transformation ( )( )    5f x f x→ − , which is a translation 

parallel to the y-axis by 2 units in the negative direction. This gives us the graph of 

( )2
2 5y x= − − , which is shown in fig. 3.21. 

 

fig. 3.18 

We then solve the equation 3 3 4x − = . To do 
this we must solve 3 3 4x − =  and 3 3 4x− + = . 

Doing this gives 
1

2
3

x =  and 
1
3

x = − . 

Graphically, these two points correspond to the 
points on the x-axis where the line 4y =  cuts  
the graph of 3 3y x= − .  
 
We have then that 3 3 4x − <  when 

3 3y x= −

"��
��@�( Sketch the function 2 22y x= − . Solve the inequality 2 22 3x − ≤ , 

giving your answers in surd form where necessary. Shade the region 2 22 3x − ≤  on 

your sketch. �
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$5	������@2�By performing transformations of the graph of 2y x= , sketch the graph 
of 2 4 8y x x= − + . 
 
Remember that we can express any quadratic equation in the form ( )2

y a x b c= ± ± , 

where a, b and c are constants. We write 2 4 8y x x= − +  as ( )2
2 4y x= − + . We can now 

sketch the required graph by performing the transformation ( )( )    2f x f x→ − , 

followed by the transformation ( )( )    4f x f x→ +  on the graph of 2y x= . The process 
is similar to example 3.8. We will skip intermediate steps and plot the end result, which is 
shown in fig. 3.22. 
 

 
 
 
 

2y x= ( )2
2y x= −

fig. 3.19 fig. 3.20 fig. 3.21 

"��
��@���By performing transformations of the graph of 2y x= , sketch the graph 

of ( )2
3 2y x= + .�

( )2
2 5y x= − −

fig. 3.22 

"��
��@�' By performing transformations 
of the graph of 2y x= , sketch the graph of 

2 6 6y x x= + + . 
 

"��
��@�� Sketch the graph of ( ) 2f x x= . 
On the same axes, sketch the graph of 

( )2 1f x − + . 
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We are already used to working with inverse 
trigonometric functions. Consider fig. 3.24, to find  

θ , we use the inverse sine function, 1 1
sin

2
θ − � �= � �

� �
 

  30θ� = �  or 
6
π

 radians. Recall the graph of sinx from Chapter 2, fig. 2.3, it is shown 

again below. 
 

 
 
 
 
 
The sine function with the restricted domain [ ]2,  2x π π∈ −  is shown in fig. 3.25. 
 

"��
��@�* The graph of 2y x=  has been 
subjected to two transformations to produce the 
graph shown in fig. 3.23. The minimum value of 
the graph in fig. 3.23 occurs at ( )8, 5− − . State 
the two transformations that would produce fig. 
3.23 from 2y x= . 

fig. 3.23 

� 

1 

2 

fig 3.24 

fig. 2.3 

We can see that there are many (infinitely 

many) angles that have a sine of 
1
2

, not 

just 
6
π

 that our calculator tells us. Recall 

from the section ‘inverse functions and 
their graphs, Chapter 3, that only one-to-
one functions have inverses. The graph of 
sin x  as shown opposite is not one-to one 
and so does not have an inverse. To 
proceed to define the inverse sine 
function, we must restrict the domain of 
sin x  to [ ]2,  2π π− . 
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����������  
 
 
 
The sine function on this restricted domain is now one-to-one and so the inverse function, 

1siny x−=  exists. Recall that the graph of the inverse function is obtained by reflecting 
the original function in the line y x= . The inverse sine function is shown in fig. 3.26. 
Notice that the domain of the sine function becomes the range of the inverse sine function, 
and that the range of the sine function becomes domain of the inverse sine function. 
Notice, the inverse sine function may be denoted by 1sin−  or by arcsine. 

 
 
We can restrict the domains of the cosine and tangent functions in a similar way so that 
their inverse functions can be defined. The cosine function is restricted to the domain 

[ ]0,  x π∈  and the tangent function is restricted to the domain [ ]2,  2x π π∈ − . The 
graphs of cosine and tangent with restricted domains, along with their respective inverse 
functions are shown in the following graphs. 
 

        
 
 
 

fig. 3.25 

siny x=

fig. 3.26 

1sin x−  does NOT mean 
1

sin x
. 1sin−  and arcsine are equivalent 

symbols for the inverse sine function. 

1siny x−=

cosy x=
1cosy x−=

fig. 3.27 fig. 3.28 
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Note, alternative names for the inverse cosine function are 1cos−  and arccos. Alternative 
names for the inverse tangent function are 1tan−  and arctan. 
�

���	�
:������	�
�	�����
	����
 
 
We define the cosecant (cosec), secant (sec) and cotangent (cot) as follows: 
 

1
cosec

sin
θ

θ
≡  

1
sec

cos
θ

θ
≡   

1
cot

tan
θ

θ
≡  

 
Let us consider the graph of cosecθ . By looking at the graph of sinθ  (fig. 2.3), we can 
see how the graph of cosecθ  will look. For small positive values of �, sinθ  is very small, 

so 
1

cosec
sin

θ
θ

≡  will be very large. At 
2
πθ = , sinθ  is 1, so cosecθ  is also 1. When � 

is close to π , sinθ  is close to zero, so cosecθ  will be very large. We now have an idea 
of what the graph of cosecθ  looks like in the range 0 θ π≤ ≤ . Performing a similar 
analysis for other values of � gives us the graph of cosecθ  as shown in fig. 3.31. 
 
 

 
 

fig. 3.31 
 
 

fig. 3.29 fig. 3.30 

tany x=

1tany x−=
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� Notice that cosecθ  is defined for all values of � except 0, , 2 ,  3 ...θ π π π= ± ± ±  
� The function ( ) cosecf θ θ=  is periodic, of period 2π . 

� Also notice that for ( ) cosecf θ θ= , ( ) 1f θ ≥  or ( ) 1f θ ≤ . In other words, 

( ) 1f θ ≥ . 

 
By similar analysis, we can plot graphs for secθ  (fig. 3.32) and cotθ  (fig. 3.33). Task: 
Write down analogous statements to the three bullet points above for the functions 

( ) secf θ θ=  and ( ) cotf θ θ= .  
 
 

                            
                    
                      fig. 3.32                                                           fig. 3.33 
 
�
".�������"��������
����)���
�
��� 
 
In Chapter 2 we established the identity, 
 

2 2sin cos 1θ θ+ =  .................................................................................(1) 
 
Dividing (1) throughout by 2cos θ  produces a new 
trigonometric identity: 

2 2 2
2

1
tan 1       tan 1 sec

cos
θ θ θ

θ
+ = � + =  or  

 
 
Dividing (1) by 2sin θ  gives another identity, 
 

2 2

1 1
1    

tan sinθ θ
+ = �  

 
We now have two more tools at our disposal when solving trigonometric equations. 
 
$5	������@�( Solve the equation 2tan 2sec 2 0x x+ + =  in the range 0 2x π≤ ≤ . 
 

2 21 tan secθ θ+ =  

2 21 cot cosecθ θ+ =  
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We notice that we can substitute for 2tan x  to get a quadratic in sec x.  
 
Since 2 2tan sec 1x x= −  we can write: 
 

2 2sec 1 2sec 2 0      sec 2sec 1 0x x x x− + + = � + + = . 
 
We can now factorise: 
 

( )( ) ( )2
sec 1 sec 1 0   or   sec 1 0x x x+ + = + =  

 
1

  sec 1      1      cos 1
cos

x x
x

� = − � = − � = −  

 
Hence we must have that x π= . This is the only solution in the given range. 
 

 
 
 

�
 

����
�
��! "�� � �� ����# ��� � �$ �  ������ #�
��! "�� � �� ����# ��� � �$ �  ������ #�
��! "�� � �� ����# ��� � �$ �  ������ #�
��! "�� � �� ����# ��� � �$ �  ������ # ��
�
 
"������
�������	����
����	�� 
 
Let us now introduce the number e. e, like π , is an irrational number. Moreover, it is a 
transcendental number (not the root of any ratioal polynomial). e, like π , is just a 
number. The value of e (to 75 decimal places) is shown below. 
�

�

2.718281828459045235360287471352662497757247093699959574966967627724076630353...e =
 
This number has some very special properties, which we will learn more about later.  
 
e is often used as the base of logarithms. Recall from Chapter 2 the section ‘Logarithms’. 
We noted that logarithms can have any base, but often we use logarithms with base 10. In 
fact, more often we use logarithms with base e. We use logarithms with base e so often 
that it has its own symbol, ‘ln’, 
 

log lne x x≡ .  ln x  always means ‘logarithm base e of x’. 

"��
��@�/ Solve the equation 22cosec 5 5cotθ θ= +  in the interval 0 x π≤ ≤ .�

"��
��@�� Solve the equation sec 3cosecθ θ=  for 0 2θ π≤ ≤ .�
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The logarithmic function base e is often called ‘the natural logarithm’. 
 
One very important function in mathematics is the function ( ) xf x e= . Recall from 

Chapter 2 the section ‘The Graph of y = ax’. In fig. 2.15, we plotted the graph of xy a=  
for different values of a. The graph of ( ) xf x e=  is shown in fig. 3.34. The function 

( ) xf x e=  is known as ‘the exponential function’. 
 
 

 
 
 
 
This demonstrates that if ( ) xf x e= , then ( )1 lnf x x− = .  
 
 

What does the graph of lny x=  look like? 
We have established that ln x  is the inverse 
function of xe . We know what the graph of xe  
looks like (fig. 3.34), we know from the earlier 
section ‘Inverse Functions and their Graphs’ 
that the graph of the inverse function is a 
reflection of the graph of the original function 
in the line y x= . From fig. 3.34, we can plot 
the graph of lny x=  which is shown in  

        fig. 3.35. 
 
 
 
 

����
����
����
����

fig. 3.34 

"���)�%��������
���$5�����
�	��

���
����
�

The inverse of the exponential function, xe , is the 
logarithmic function base e, ln x . Performing the 
exponential function on a number, and finding the 
natural logarithm of the result will take us back to 
the original number, i.e. 
 

( )ln xe x= .  

 

If ( ) xf x e= , then ( )1 lnf x x− =  

( ) xf x e=

fig. 3.35 
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�
��� ������� ������ ��
��� ������� ������ ��
��� ������� ������ ��
��� ������� ������ � ��
 
 
"���#���%	
�%������� 

 
One of the most important features of the function ( ) xf x e=  is that this function is its 

own derivative, i.e. if ( ) xf x e=  then ( )' xf x e= . 
 
This is the only (nontrivial) function that has this special property.  
 
 

 
�
�

"���#���%	
�%���������
�

Before we look at the derivative of ln x , we first mention an important point. We have 

introduced the symbol 
d
d
y
x

 as a piece of notation. We have said that this is just a symbol, 

not a fraction. It is true, however, that 
d 1

dd
d

y
xx
y

= .  

 
�

�

$5	������@�� If lny x= , calculate 
d
d
y
x

. 

 
In this example, we learn how to differentiate lny x= . First of all, form our knowledge 
of logarithms, we write, 
 

ln       yy x e x= ⇔ = . 
 

So we have that yx e= , now we can calculate 
d
d

x
y

. We now know that the derivative of 

ye  is ye . 
 

d
      

d
y yx

x e e
y

= � = . 

 

( )d
d

x xe e
x

=  

d 1
dd
d

y
xx
y

=  
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Now, we know that 
d 1

dd
d

y
xx
y

= , so 

 
d d 1

      
d d

y
y

x y
e

y x e
= � = . The answer should be in terms of x. Remember that yx e= , so 

 
d 1 1
d y

y
x e x

= = . 

 
We now have the required result. 

 
 
 
 

 
 
"���#���%	
�%����������
 
A formal proof of the derivative of sin x  is not given here, it can be found in A level 
maths text books.  
 
Let us take a non-rigorous look at the problem. Look back at the graph of sin x (fig. 2.3). 
Remember that the derivative function is a function of how the gradient varies with x. It 
is clear that the derivative of sin x  is a periodic function. It is also clear that the 
derivative of sin x  has maximum (positive) values at 0,  ,  2 ,  ...x π π=  since this is where 
sin x  has its maximum positive gradients. We can see that the derivative function has 
minimum values at ,  2 ,  3 , ... x π π π= − − −  since this is where sin x  has its minimum 
negative gradients.  
 
We already know a function which has the required properties of the derivative function. 
This function is, of course, cos x . Indeed, the derivative of sin x  is cos x . 

 
 
 
 

 
 
"���#���%	
�%����������
 
Again, we will not prove this result. A similar qualitative approach as above will suggest 
that sin x−  fits the requirements of the derivative of cos x . Indeed, sin x−  is the 
derivative of cos x . 

 
 

( )d 1
ln

d
x

x x
=  

( )d
sin cos

d
x x

x
=  

( )d
cos sin

d
x x

x
= −  
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�%�����
	�� 
 
The result is simply stated here, however we will prove it later. 

 
 
 
 

 
 
"���������
�+��� 
 
So far we have only considered the derivatives of simple functions and linear 
combinations of these simple functions. We have not considered, for example, products 
of functions, like 2 sinx x . There is an important rule for differentiating a product of two 
functions, called the product rule. 

 
 
 
 
 

 
Let us prove this result. We have two functions ( )f x  and ( )g x  and we are considering 

the product ( ) ( )y f x g x= . Suppose we change x by a small amount xδ , which results 
in the function f changing by a small amount fδ  and the function g changing by a small 
amount gδ  and the function y changing by a small amount yδ . 
 
We have that y fg= . Changing x by a small amount xδ  will mean that, 
 

( )( )y y f f g gδ δ δ+ = + +  
 

  y fg f g g f f g yδ δ δ δ δ� = + + + −  
 
But, y fg= , so,  
 

  y fg f g g f f g fgδ δ δ δ δ� = + + + −  
 

  y f g g f f gδ δ δ δ δ� = + +  
 
Dividing through by xδ  gives, 
 

y g f f g
f g

x x x x
δ δ δ δ δ
δ δ δ δ

= + +  

 

( ) 2d
tan sec

d
x x

x
=  

If f and g are both functions of x and y fg= , then 
d d d
d d d
y g f

f g
x x x

= +  
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Now as the change in x tends to zero, the resulting changes in f, g, and y tend to zero, i.e. 

as 0xδ → , 0fδ → , 0fδ →  and 0gδ → , and 
y d dg

,  
d d

y g
x x x x

δ δ
δ δ

→ → , 
df
d

f
x x

δ
δ

→  and 

0
f g

x
δ δ

δ
→ .  

 
Therefore, in the limit as x tends to zero, we have,  
 
d d d
d d d
y g f

f g
x x x

= +  as required. 

 
 

$5	������@�'�If 2 siny x x= , calculate 
d
d
y
x

. 

We have a product of two functions, so use the product rule. We have the two functions, 
2f x=  and sing x= . The product rule tells us to leave the first function alone and 

multiply by the derivative of the second function, we then add the second function left 
alone multiplied by the derivative of the first function.  
 
Following this method gives: 
 

( ) ( )2 2d d d
sin sin

d d d
y

x x x x
x x x

= +  

 
      ( )2 cos sin 2x x x x= +  
 
      2 cos 2 sinx x x x= +  
 
 

$5	������@���If 
xe

y
x

= , calculate 
d
d
y
x

. 

 
At first sight, this expression does not appear to be a product of two functions. We can 
write it as a product of two functions in the following way,  
 

1 xy x e−= . 
 
Following the product rule we get, 
 

( ) ( )1 1d d d
d d d

x xy
x e e x

x x x
− −= +  

 
      ( )1 2x xx e e x− −= + −  
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      2

x xe e
x x

= −  

 

      
1

1
xe

x x
� �= −� �
� �

 

 
 
 
 
 
 

 
 
 
 
 

 
 
"������
���
�+��� 
 

The quotient rule is a method for differentiating a quotient, or fraction, of the form 
( )
( )

f x

g x
. 

 
The quotient rule is not proved 
here. A proof can be found in A 
level pure maths text books. 
 
 

$5	������@�* Given that 2

2 3
7

x
y

x
−=
+

, find 
d
d
y
x

. 

 
Following the rule we have,  
 

( )( ) ( )( )
( )

2 2

22

7 2 3 ' 2 3 7 'd
d 7

x x x xy
x x

+ − − − +
=

+
 

 

"��
��@�! Use the product rule to evaluate ( )( )( )2 4 2d
3 3 7

d
x x x

x
+ −  

"��
��@�� Use the product rule to calculate ( ) ( )2d d
sin sin sin

d d
x x x

x x
= �

"��
��@�2 Show that ( ) ( )d d
sin cos 2cos 1

d d
x x x

x x
− = − . What does this tell you about the 

function ( ) sin cos 2cosf x x x x= − ?�

If 
( )
( )

f x
y

g x
= , then 

( ) ( ) ( ) ( )
( )( )2

. ' . 'd
d

g x f x f x g xy
x g x

−
=  
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Inside function 

     
( ) ( )2

4 2

7 .2 2 3 .2

14 49

x x x

x x

+ − −
=

+ +
 

 

     
2 2

4 2

2 14 4 6
14 49

x x x
x x

+ − +=
+ +

 

 

      
2

4 2

14 6 2
14 49

x x
x x

+ −=
+ +

 

 

$5	������@�� Given that 
sin

xe
y

x
= , find 

d
d
y
x

. 

 
Following the rule for differentiating quotients, we have: 
 

( )
2

sin . cosd
d sin

x xx e e xy
x x

−
=  

 

     2

sin cos
sin

x xe x e x
x

−=  

 

     
( )

2

sin cos

sin

xe x x

x

−
=  

 
�
"�����	���+����

�

)�
�����
����
�
This is an important rule used to differentiate more complicated functions that can be 
thought of as two functions in one, called composite functions. Let us look at an 
example of a composite function. 
 
Consider the function ( ) ( )2

2 3f x x= + . If we wish to calculate the value of this function 
for 2x = , we split the calculation into two parts. First we calculate 2 3x + , for 2x = , this 
gives 7. Next we square the result, giving the final answer 49. The part of the function 
that we calculate first, 2 3x +  in this case, is called the inside function; the part of the 
function that we calculate second, the ‘squared’ part of the function in this case, is called 
the outside function. NB: The product rule would also work for this function. 
 

( ) ( )2
2 3f x x= +  

"��
��@'( Use the quotient rule to evaluate 
3d 2

d cos
x x

x x
� �−
� �
� �

 

"��
��@'� Use the quotient rule to show 

that ( ) 2d
tan sec

d
x x

x
= . (Hint: 

sin
tan

cos
x

x
x

= ) 

Outside function 
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��������

Here is another example of a composite function, ( ) ( )sin 2f x x= . What is the inside 
function and the outside function? If we were given a value to substitute in to this 

function, say 
2

x
π= , we would first calculate 2x  and then find the sine of the result. 

Therefore, the inside function is 2x  and the outside function is ( )sin inside function , the 
sine of the inside function.  
 

�
�

��
��������#�������
�	
�����������
�����
���� 
 
When faced with the task of differentiating a composite function, we first need to identify 
the inside function and the outside function. Let us take the example ( ) ( )2

2 3f x x= + . 

We have established that the inside function is 2 3x +  and the outside function is 

( )2
inside function . It may be useful to use a single symbol to stand for the inside 

function. Let us call the inside function u. i.e. let 2 3u x= + . We can now write that 
( ) 2f x u= . The derivative of ( )f x  with respect to x is given by: 

 

 
( ) ( )d d d

d d d
f x f x u

x u x
= ×  

 

                       
d

2
d
u

u
x

= ×   Now since 2 3u x= + , 
d

2
d
u
x

=  

 

So, 
( ) ( )d

2 2 3 2
d
f x

x
x

= + ×  

 
                  ( )4 2 3x= +  
 

�

�
$5	������@�/�Given that 

( )sin 3 2y x= + , find 
d
d
y
x

.�

"��
��@'' Identify the inside function and the outside function for the following 
composite functions: 
 

a) ( ) ( )1 ln 2 3f x x= +   b) ( ) ( )2 2

1
5

f x
x

=
−

  c) ( ) 2
3

xf x e=             

d) ( ) 2
4 tanf x x=  

If ( )y f u=  where u is a function of x, then 
 

 
d d d
d d d
y y u
x u x

= ×   

Remember to give your final 
answer in terms of the original 
variable, x. 
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The inside function here is 3 2x + . Let 3 2u x= + . We have siny u= . Now, from the 
chain rule, we have:�
 
d d d
d d d
y y u
x u x

= ×  

 
     cos 3u= ×  
 
     ( )3cos 3 2x= +  
 

$5	������@�! Given that 2xy e= , find 
d
d
y
x

. 

 
Here, the inside function is 2x . Let 2u x= . Then uy e= . From the chain rule, we have 
that: 
 
d d d
d d d
y y u
x u x

= ×  

 
      .2ue=  
 
      22 xe=  
 

$5	������@�� Find ( )2d
sin

d
x

x
. 

 
Let 2siny x= . The inside function is sin x . Let sinu x= , so that 2y u= . From the chain 
rule, we have that: 
 
d d d
d d d
y y u
x u x

= ×  

 
     2 .cosu x=  
 
     2sin cosx x=  
 

 

����

"��
��@'� Using the chain rule, evaluate the following, 
 

a) ( )2d
3

d
x x

x
+  b) ( )2d

cos
d

x
x

  c) ( )( )2d
ln

d
x

x
  d) ( )( )d

ln 2
d

x
x
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�
���� �� ����� ��
���� �� ����� ��
���� �� ����� ��
���� �� ����� � ��
 
 
)�
���	
��������� 
 
What is the integral of xe  w.r.t. x? i.e. what is dxe x� ? We know that integration is the 

reverse process of differentiation, so we are asking the question, what function, when 
differentiated, gives xe  as the answer? We know that the answer to this question is xe  
itself. So we have that: 

 
 
 
 

 
)�
���	
��������� 
 

What is 
1

dx
x�

? Again, the answer to the question is a function which, when 

differentiated gives 
1
x

 as the answer. We know that the derivative of ln x  is 
1
x

, hence: 

 
 
 
 
 

�

)�
���	
������������	������� 
 
Similarly, we have the following results: 

 
 
 
 

 
 
 
 

 

 

( )d
      d

d
x x x xe e e x e c

x
= � = +�  

( )d 1 1
ln       d ln

d
x x x c

x x x
= � = +�

 

( )d
sin cos       cos d sin

d
x x x x x c

x
= � = +�  

( )d
cos sin       sin d cos

d
x x x x x c

x
= − � = − +�  

"��
��@'* Integrate the following function, ( ) 21 1
sin 2cos

2
xf x x x x e

x
= + + − + .�
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)�
���	
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�����
�����9���
��������	�,���	��

���
��������; 
 
Earlier we developed a method of differentiating composite functions. This method tells 
us to differentiate the outside function and then multiply by the derivative of the inside 
function. There is an analogous method for integrating composite functions, which can be 
thought of as the reverse process of the chain rule. 
 
Let us consider an example. Take the composite function ( )4

2 7y x= − . We know how to 
differentiate this function. We have that,  
 

( )3d
8 2 7

d
y

x
x

= −  (check). 

 
So, given the function ( )3

8 2 7y x= −  how do we integrate it? We must reverse the 
differentiation process. To do this we integrate the outside function and divide by the 
derivative of the inside function. 
 
So, if ( ) ( )3

8 2 7f x x= −   inside function: 2 7x − . Let 2 7x u− =  
 

Outside function: 3u   (we do not worry about the                           
constant, 8) 

So, ( ) 38f x u= , ( ) ( )( )31
 d 8  d

d
d

f x x u x x
u
x

=� �  

 

            41
.2.

2
u c= +  

 
                                             ( )4

2 7x c= − +  

 

To integrate a composite function, first identify the inside function and the outside 
function. Then we integrate the outside function and divide by the derivative of the 
inside function. But beware – this method will only work when the inside function 
is linear. Think about why this method does not work when the inside function is not 
linear – Hint: make a substitution (see next section) for the inside function, say u, and 
try to write down the integral solely in terms of the new variable, u.  
 

It may be possible to get confused when integrating composite functions because 
both integration and differentiation are used in the process. Remember to divide 
by the derivative of the inside function. 
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$5	������@�2 Integrate the function ( ) 3 3f x x= − . 
 

The inside function is 3 3x − . Let 3 3x u− = . The outside function is 
1
2u u= . 

 

So, ( )
1
2f x u= . We integrate the outside function and divide by the derivative of the 

inside function. 
 

( ) ( )( )
1
21

 d  d
d
d

f x x u x x
u
x

=� �  

 

                 ( )
3
2

1 2
3 3

u x c= +  

 

                 ( ) ( )
3

3
2

2 2
3 3 3 3

9 9
x c x= − + = −  

 
$5	������@'( Evaluate 3 2  dxe x+

� . 

 
The inside function is 3 2x + . Let 3 2x u+ = . The outside function is ue . 
 
Let ( ) 3 2x uf x e e+= = .  
 

( ) 1 1
 d  d

d 3
d

u uf x x e x e c
u
x

= = +� �  

 

                                      3 21
3

xe c+= +  

 
 
 
 
 
 
 
 
 
 
 
�

"��
��@'� Evaluate ( )4
2 5  dx x−�  

"��
��@'/ Evaluate ( )cos 3  dx x�  

"��
��@'! A function, ( )f x , is differentiated to give, 

( ) ( )1
' sin 3

2
f x x

x
= −

+
. Suggest a formula for ( )f x  
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����6����6�
�
�
��� 
 
When faced with the task of integrating a product, like ( )3

4x x + , you should consider 
the method of integration by substitution. This method is perhaps best explained by 
considering a step-by-step example.  
Suppose we wish to evaluate ( )3

4  dx x x+� . As the name of the method suggests, we 

proceed by making an algebraic substitution. In this example, we let 4u x= + . It will 
become clear why we chose this particular substitution as we proceed through the 
example. The aim of the game is to replace every expression involving x in the original 
problem with an expression involving u.  
 
Now, we have decided that 4u x= + . Rearranging this we can see that 4x u= − , so 

4u −  replaces the occurrence of  x in the original problem. We also have a ‘dx’ in the 

original problem. Now, since 4u x= + , we can say that 
d d

1      d d
d 1
u u

x u
x

= � = = . So 

dx is replaced by du.  
 
The original problem was ( )3

4  dx x x+� . Making the substitution leads to the following 

form of the problem: 
 
 ( ) 34  du u u−� . 

 
Multiplying out the brackets gives: 
 
 4 34  du u u−�  which can easily be evaluated. 

 
4 3 5 41

4  d
5

u u u u u c− = − +� . 

 
Remember that the original question was posed in terms of x, so the final answer must 
also be stated in terms of x. So we have: 
 

( ) ( ) ( )3 5 41
4  d 4 4

5
x x x x x c+ = + − + +� . 

 
Note: In this example, we could have multiplied out the original integrand ( )3

4x x + . If 

the integrand had been, for example ( )7
4x x + , however, it is clear that multiplying out 

the bracket is not sensible. 
�

$5	������@'� Evaluate 2 3 dx x x−�  by using the substitution 2 3u x= − . 
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Sometimes, as in this problem, we are given an appropriate substitution. Other times, we 
have to think for ourselves. 
 

If 2 3u x= − , then 
3

2
u

x
+= . Also, we have that 

d d
2      d

d 2
u u

x
x

= � = . 

So, 2 3 dx x x−�  becomes 
1 3 1
2 2 23 d 1

.  3  d
2 2 4

u u
u u u u

+ = +� �  

 

                        
5 3
2 21 2

2
4 5

u u c
� �

= + +� �
� �

 

 

                                                                     5 31 1
10 2

u u c= + +  

 

                                                                      ( ) ( )5 31 1
2 3 2 3

10 2
x x c= − + − + . 

 
$5	������@'' Evaluate ( ) ( )4

1 2 5  dx x x− +� . 

 
Often, we substitute for a term that is raised to a power, in this case the term 2 5x + . Let 

2 5u x= + . Now, we need to express  1x −  in terms of u.  
 

Since 2 5u x= +  we have that 
5

2
u

x
−= , so 

5 7
1 1

2 2
u u

x
− −− = − = . 

 

Now 2 5u x= + , so 
d d

2      d
d 2
u u

x
x

= � = . 

 

So, ( ) ( )4
1 2 5  dx x x− +�  becomes 4 5 47 d 1

7  d
2 2 4

u u
u u u u

− = −� �    

 

                                                                              6 51 1 7
4 6 5

u u c� �= − +� �
� �

 

 

                                                                               ( ) ( )6 51 1 7
2 5 2 5

4 6 5
x x c� 	= + − + +
 �� 

  

 

$5	������@'� Evaluate 
3

3 41
2 7 d

2
x x x� �−� �
� �

� . 
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Here we make the substitution 4 3
3

1 d d
7      2       d

2 d 2
u u

u x x x
x x

= − � = � = . 

 

So, 
3

3 41
2 7 d

2
x x x� �−� �
� �

�  becomes 3 3
3

d
2 .

2
u

x u
x� . We notice that the 32x  cancels to give, 

 
4

3 4 41 1 1
 d 7

4 4 2
u u u c x c� �= + = − +� �

� �
� . 

 
Notice that in this example, the problem was made easy because the 32x cancelled. This 

is because 32x  is the derivative of 41
7

2
x − . 

 
   
 
 

�
 
 
 

 
 
 
 
 

 
"���)�
���	�����
�9�;1� 
 

The integral of a function of the form 
( )
( )
'f x

f x
 is the natural logarithm of the function on 

the denominator, ( )f x . i.e. 
 
 
 
 
 

 

"��
��@'� Integrate the function ( ) ( )2
3 1f x x x= − �

"��
��@'2 Evaluate ( )( )6
2 1 1 dx x x− −�  using the substitution 1u x= − �

"��
��@�( Evaluate ( )334 7 dx x x−� �

( )
( ) ( )'

d ln
f x

x f x c
f x

= +�  
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We can illustrate why this is true by using the substitution ( )u f x= . Then ( )d
'

d
u

f x
x

=  

and so ( )
d

d
'
u

x
f x

= . Then the integral becomes, 

( )
( ) ( )' d 1

d ln ln
'

f x u
u u c f x c

u f x u
= = + = +� � . 

 

$5	������@'* Evaluate 
( )2

18 12
d

3 2

x
x

x

+
+� . 

 
We can write down the answer to this problem straight away by noticing that the 

derivative of the denominator is ( )( ) ( )2d
3 2 6 3 2 18 12

d
x x x

x
+ = + = + , which is exactly 

the numerator. So we have the answer 
( )

( )2

2

18 12
d ln 3 2

3 2

x
x x

x

+ = +
+� . 

$5	������@'��Evaluate 2 d
1

x
x

x+�
. 

 
Now, in this case the numerator is not exactly the derivative of the denominator, but it is 
1
2

 times the derivative of the denominator. This integral is of the form 

( )
( )

( )
( ) ( )

1
' '1 12 d d ln

2 2

f x f x
x x f x c

f x f x
= = +� � . So the answer to the question is, 

 

( )2
2

1
d ln 1

1 2
x

x x
x

= +
+�

. 

 
 
�
�

�
�
 
 
 
 
 

 
 
�
�

"��
��@�� Evaluate 3

3
 d

6
x

x
x −� �

"��
��@�' Evaluate 2

1
sin cos

2  d
ln sin

x x
x x

x x

−

−� �
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�
This is another method of integrating a product of functions. We have studied the product 
rule, which we use to differentiate products of functions, the method of integration by 
parts can be derived from the product rule for differentiation.  
 

Recall that, ( )d d d
d d d

v u
uv u v

x x x
= + .....................................................................................(†) 

 
where u and v are both functions of x. Integrating both sides of (†) with respect to x gives: 
 

d d
 d  d

d d
v u

uv u x v x
x x

= +� �  

 
 
 

 
This is the method of integration by parts. It is a little difficult to see how it works from 
this formula, so let us consider an example. 
 
$5	������@'/ Calculate  dxxe x� . 

 
Here we set u x= , ' xv e= . So we have ' 1u = , ' xv e=  and xv e= . 
 
We have that, ' d ' duv x uv vu x= −� �  

 
   d .1 dx x xxe x xe e x� = −� �  

 
                     x xxe e c= − +  
 
                      ( )1xe x c= − +  
 
The important thing to remember about this method is that only one of the functions, u or 
v, has to be integrated, the other is differentiated. We can choose which function we 
integrate and which function we differentiate. In this example, we choose u x=  so that 
when we differentiate it, we get ' 1u = , a constant, which makes the problem very easy. If 
we had made the wrong decision and set xu e= , it would not have been so easy to solve 
the problem.  
 
$5	������@'! Evaluate cos  dx x x� . 

 

  ' d ' duv x uv vu x� = −� �  
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Here we choose u x=  and ' cosv x= . It is not necessary to write down your choices for u 
and v every time you use this method, nor is it necessary to write down the integration by 
parts formula once you are comfortable with the method. 
 

cos  d .sin sin .1 dx x x x x x x= −� �  

 
                   sin cosx x x c= + + . 
 
$5	������@'� Evaluate 2 sin  dx x x� . 

 
In the previous two examples, we had a single x term which we chose to be u so that 
when we differentiated it we got a constant term. In this example, we have an 2x  term. 
When we differentiate this term once we get 2x. Notice, however, that if we differentiate 
it a second time we do get a constant, 2. This suggests that we need to use the method of 
integration by parts twice in this example.  
 
Let us choose 2u x=  and sinv x= . Working through the method we get,  
 

( )2 2sin  d cos cos .2  dx x x x x x x x= − − −� �  

 
                     2 cos 2 .cos  dx x x x x= − + �  

 
It may seem at this stage that we have not made any progress, since we still cannot 
integrate 2 .cosx x . We can however use integration by parts a second time to integrate 
this product. Let us rewrite the last line of the calculation as follows, 
 

2 2sin  d cos 2 .cos  dx x x x x x x x= − +� �  

 
                   2 cosx x I= − +  
 
Now, 2 .cos  dI x x x= �  

 
             2 sin sin .2 dx x x x= − �  

 
             2 sin 2cosx x x c= + +  
 
So, the answer to the original problem is, 
 

2 2sin  d cos 2 sin 2cosx x x x x x x x c= − + + +�  

 
 (which you may like to write a little neater) 
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$5	������@'2 Evaluate sin  dxI e x x= � . 

 
Notice that in this example, neither of the terms will ever reduce to a constant, no matter 
how many times we differentiate it. We can still solve this problem by using integration 
by parts twice. It does not matter in this case which term we choose to differentiate and 
which term we choose to integrate. Let us choose to differentiate the xe  term and 
integrate the sin x  term. 
 

( )sin  d cos . cos .  dx x xe x x x e x e x= − − −� �  

 
                    cos cos  dx xe x e x x= − + � . 

Now let us use integration by parts a second time to evaluate cos  dxe x x� . Again we will 

chose to differentiate the xe  term and integrate the cos x  term (although in this case it 
will also work the other war around). 
 

cos  d sin sin .  dx x xe x x e x x e x= −� �  

 
                    sin sin  dx xe x e x x= − �  

 
                    sinxe x I= −  (Recall that sin  dxI e x x= � ) 

 
Substituting this result into the original problem gives,  
 

sin  d cos sinx x xI e x x e x e x I= = − + −�  

 
Some simple algebraic manipulation gives: 
 

( )1
2 cos sin       sin cos

2
x x xI e x e x I e x x= − + � = −  

 

i.e. ( )1
sin  d sin cos

2
x xI e x x e x x c= = − +�  

 
 
 
 

 
 
 

"��
��@�� Evaluate sin  dx x x� �

"��
��@�* By using integration by parts, evaluate ( )4
2  dx x x−� �
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	��	���)�
���	���

�

Here we will look at how to integrate the expressions 2 2

1
a x+

 and 
2 2

1

a x−
, where a is 

a constant. The method that we use to solve these problems is substitution, but the choice 
of substitution is not obvious. 
 

1) 2 2

1
 dx

a x+� . To solve this problem, we use the substitution tanx a θ= . This may 

seem like a strange substitution to make, but we will see how it works as we proceed 
through the problem.  
 

Let tanx a θ= , so 2 2d
sec       d sec  d

d
x

a x aθ θ θ
θ

= � = . 

 

So, 2 2

1
 dI x

a x
=

+�  becomes 
( )

2
22

1
. sec  d

tan
I a

a a
θ θ

θ
=

+� . 

 
Now, since 2 21 tan secθ θ+ = , we can write this as, 
 

2
2 2

1
. sec  d

sec
I a

a
θ θ

θ
= �  

 

  
1

 d
a

θ= �  

 

  c
a
θ +  

 

Now, since tanx a θ= , 1tan
x
a

θ − � �= � �
� �

. 

 

"��
��@�� Evaluate 2  dxx e x� �

"��
��@�/ By using integration by parts, evaluate ln  dx x� . Hint: Think of ln x  as 

1 ln x× . Choose lnu x= , 1v = �
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So, 11
tan

x
I c

a a
− � �= +� �
� �

. 

 
 
So we have the result,  
 
 
 

This is a standard result. If you recognise an integrand to be of the form 2 2

1
a x+

, for 

example 2

1
36 x+

 or 2

1
9x +

, you can write down the answer without any calculation.  

2) 
2 2

1
 dx

a x−� . To solve this problem, we use the substitution sinx a θ= , so 

d
cos       d cos  d

d
x

a x aθ θ θ
θ

= � = . 

 

So, 
2 2

1
 dI x

a x
=

−�  becomes 
2 2 2

1
. cos  d

sin
I a

a a
θ θ

θ
=

−�  

 

                                                       
( )2 2

1
. cos  d

1 sin
a

a
θ θ

θ
=

−
� . 

 
Now, since 2 21 sin cosθ θ− ≡ , we can write this as, 
 

1
. cos  d

cos
I a

a
θ θ

θ
= �  

 
  1 d cθ θ= = +� . 

 

Now, since sinx a θ= , 1sin
x
a

θ − � �= � �
� �

. 

 
 
Hence,  
 
 
 

$5	������@�( Calculate 2

1
 d

16
x

x +� . 

 

1
2 2

1 1
 d tan

x
x c

a x a a
− � �= +� �+ � �

�  

1

2 2

1
 d sin

x
x c

aa x
− � �= +� �
� �−�  
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This is of the standard form 2 2

1
 dx

a x+�  with 4a = . 

 

Hence, we can write down the answer straight away, 1
2

1 1
 d tan

16 4 4
x

x c
x

− � �= +� �+ � �
� . 

$5	������@�� Calculate 2

7
 d

64 4
x

x+� . 

 

We can write this in the form 
( )22

1
7  d

8 2
x

x+� . This is now in the standard form 

2 2

1
 dx

a x+�  with 8a =  and 2x x= .  

Now we can write down the answer straight away, 1
2

7 7 2
 d tan

64 4 8 8
x

x
x

− � �= � �+ � �
�  

 

                                                                                                         17
tan

8 4
x− � �= � �

� �
. 

 
 
 
 
 
 
 
 
 

 
 
 
 
 

�

 ���������+�%���
���  
 
Look at the graph of 2y x=  in fig. 3.34. 
 

We have seen how to calculate the value of the shaded 
area using integration. Now, imagine that the graph is in 
3 dimensional space and the whole parabola moves 
through a full turn ( 2π  radians) about the x-axis. 
Imagine the solid that the shaded area would sweep out. 
Make a sketch of the 3 dimensional solid in the box 
below (fig. 3.35). 

"��
��@�! Calculate each of the following integrals, 
 

a) 2

1
 d

4
x

x+�    b) 
2

3
 d

9
x

x−�  c) 
2

2
 d

25 100
x

x−�  

"��
��@�� Evaluate 2

2 1
 d

16
x

x
x

−
+� �

fig. 3.34 

2y x=
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xδ
 

In this section, we will learn how to calculate the area of this solid and other similar 
volumes of revolution.  
 
The way we go about solving this problem is to imagine the solid in fig. 3.35 sliced up 
vertically into a number of very thin slices each of width xδ . The radii of the discs will 
vary as we move along the solid, the radius of each disc will be 2y x= , which depend on 
where we are in relation to the y axis.  
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Note: technically the slices of the solid will not be perfect discs ass shown in fig. 3.36, 
but the thinner the slices, the closer the pieces will be to perfect discs. 
 
 
 
 
 
 
  
 
 
 
 
As we make xδ  smaller and smaller, the calculated volume gets closer and closer to the 
true volume of the solid, which is given by, 
 

 
2 2

1
 dV y xπ= � . 

 
 
 
 
 

y 

fig. 3.36 

The volume of the disc opposite is 2y xπ δ . As we have 
mentioned, each disc will have a different radius, y, which 
varies with x. To find the total volume of the solid in fig. 3.35, 
we add up the volumes of the individual thin discs from 1x =  to 

2x =  to give the total volume of the solid as, 
 

2
2

1x

V y xπ δ
=

=� . 

fig. 3.35 
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To state a general result: 

 
 
$5	������@�' Find the volume of revolution formed when the area under the graph 
of 23 4y x= +  from 1x =  to 5x =  is rotated through 2π  radians about the x-axis. 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

So, 
5 4 2

1
9 24 16 dV x x xπ= + +�  

 

          
5

5 3

1

9
8 16

5
x x xπ � 	= + +
 �� 

 

 

           
33396

5
π=  ( )3units  

 
$5	������@�� Find the volume of revolution formed when the area bounded by the 
graphs 2 3y x= +  and 2 5y x= − +  is rotated through 2π  radians about the x-axis. 
 

The volume, V, of the solid of revolution created when the area under a graph 
( )y f x=  from x a=  to x b=  is rotated through 2π  radians about the x-axis is given 

by: 

 2  d
b

a
V y xπ= �  

fig. 3.37 

It is often helpful to make a sketch, especially for 
more complicated questions. The required 
volume is given by: 
 

5 2

1
 dV y xπ= � . 

 
Now, 23 4y x= + , so  
 

( )22 2 4 23 4 9 24 16y x x x= + = + +  
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656 112
15 5

π π= −  

 

( )3320 64
   units

15 3
π π= =  

 
 
So far we have looked at volumes of revolution about the x-axis only. It may also be 
necessary for us to calculate a volume of revolution about the y-axis. The method is very 
similar to the problems of revolution about the x-axis that we have solved so far. 
 

 
 
 
$5	������@�* Find the volume of revolution created when the area bounded by the 
curve 22y x=  and the lines 3x =  to 5x = and the x-axis is rotated through 2π  radians 
about the y-axis. 
 
 
 
 
 

2 3y x= +

2 5y x= − +

fig. 3.38 

The area in this question is shown in fig. 3.38. 
To find the limits of integration, we need to 
work out where the two graphs intersect. To do 
this we solve the equation 2 23 5x x+ = − + , 
which gives 1x = ±  (check). The required 
volume is given by: 
 

( ) ( )1 12 22 2

1 1
5  d 3  dV x x x xπ π

− −
= − + − +� �  

 
    

1 1
5 3 5 2

1 1

1 10 1
25 2 9

5 3 5
x x x x x xπ π

− −

� 	 � 	= − + − + +
 � 
 ��  � 
 

The volume, V, of the solid of revolution created when the area under a graph 
( )y f x=  from x a=  to x b=  is rotated through 2π  radians about the y-axis is given 

by: 
 

 2  d
b

a
V x yπ= �  
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��������

The required volume, V, is given by, 
 

5 2

3
 d

x

x
V x yπ

=

=
= � . 

 
Now, since we are integrating with respect to y, we must 
have the integrand (and limits) in terms of y. We do this 

by using the relation 2 22     
2
y

y x x= � = . So, 

5 2

3
 d

x

x
V x yπ

=

=
= �  becomes,  

 
50250

18
18

 d 544
2 4

y

y

y y
V yπ π π

=

=

� 	
= = =
 �

� 
� . 

 

 
 
 
 

�
��+ ( � ���) ���, ���� � #�
��+ ( � ���) ���, ���� � #�
��+ ( � ���) ���, ���� � #�
��+ ( � ���) ���, ���� � # �
 
 
)�
�����
����	���)�
��%	��-����
��� 
 
In real life situations, we are often faced with equations which have no analytic solution. 
That is to say we cannot find an exact solution to the equation. For example, we can solve 
the equation 2 2 0x x+ − =  by factorising ( )( )2 1 0    2  or  1x x x x+ − = � = − = . We 

22y x=

fig. 3.39 

Remember, 2x appears in the integral for volumes of revolution about the y-axis; 
2y appears in the integral for volumes of revolution about the x-axis. 

"��
��@�2 Calculate the volume of revolution created when the area bounded by the 
curves 2y x=  and 6 8y x= −  is rotated through 2π  radians about the x-axis.�

"��
��@*( Calculate the volume of revolution created when the area below the 
curve 3y x=  from 1x =  to 6x =  is rotated through 2π  radians about the y-axis.�

"��
��@*� Calculate the volume of revolution formed when the area below the 
curve 2 7y x= − +  from 0x =  to 2x =  is rotated through π  radians about the x-axis.�
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have successfully solved the equation analytically to find the exact solutions. What about 
the equation cos 0x x− = . Can you solve this equation? Well, unfortunately this equation 
can not be solved analytically unlike the previous example. We can not find the exact 
solution of this equation using algebraic, or any other techniques. So, do we have any 
hope of solving this equation? Well, we can find the approximate solution or solutions to 
the equation cos 0x x− = . In fact, we can find the solution or solutions to an arbitrary 
degree of accuracy, however the more accurate we require our solution(s), the longer the 
process.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In general, the sign of a function, ( )f x , to the left of a root is opposite to the sign of the 
function to the right of thee root. We can use this simple fact to help us find the roots of 
equations. For example to solve cos 0x x− = , we can calculate the value of the function 
at a few points and see if we get a change of sign: ( )0 cos(0) 0 1 0 1f = − = − =  (positive), 

( )1 cos(1) 1 0.4597f = − ≈ −  (negative), so we can say that there is a zero somewhere 
between 0x =  and 1x = . To get a more accurate approximation to the root, we could 
look at the value of the function ( )f x  at the point mid-way between 0x =  and 1x = , i.e. 

at the point 0.5x = . We see that ( ) ( )0.5 cos 0.5 0.5 0.3776f = − ≈  (positive). So now we 
can say that the root lies somewhere between 0.5x =  and 1x = . To get a better 
approximation, we look at the value of ( )f x  at the point mid-way between 0.5x =  and 

1x = , i.e. at the point 0.75x = . We see that ( ) ( )0.75 cos 0.75 0.75 0.0183f = − ≈ −  
(negative). So now we can say that the root lies somewhere between 0.5x =  and 

0.75x = . We can continue in this way to give the following,  
 

( )0.5 0.3776 0f ≈ >   ( )0.75 0.0183 0f ≈ − <  mid point = 0.626 
 

( )0.625 0.1860 0f ≈ >  ( )0.75 0.0183 0f ≈ − <  mid point = 0.6875 
 

( )0.6875 0.0853 0f ≈ >  ( )0.75 0.0183 0f ≈ − <  mid point = 0.71875 
 

fig. 3.40 

So, suppose we want to solve the 
equation cos 0x x− = . The graph of 

( ) cosy f x x x= = −  is shown in fig. 
3.40. We know that the solution of 

( ) 0f x = corresponds to the point where 

the graph of ( )f x  cuts the x-axis. So we 
can tell, just from plotting the graph, that 
the solution is somewhere around 

0.7x = . We notice that to the left of the 
root, the function is positive and to the 
right of the root the function is negative.  

( ) cosy f x x x= = −
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( )0.71875 0.0339 0f ≈ >  ( )0.75 0.0183 0f ≈ − <  mid point = 0.73438 
 

( )0.73438 0.0079 0f ≈ >  ( )0.75 0.0183 0f ≈ − <  mid point = 0.74219 
 

( )0.74219 0.0052 0f ≈ − <  ( )0.73438 0.0079 0f ≈ >  mid point = 0.73829 
 
At this stage, we can say that the root of the equation cos 0x x− =  lies between 0.73x =  
and 0.74x = . So, at this stage we can say that the root of the equation is 0.7 to one 
decimal place. We could continue to achieve better accuracy.  
 
NB: The equation cos 0x =  has an infinite number of roots. Does the equation 
cos 0x x− =  have only the one root we have approximated, or are there other roots 
outside the domain we have considered?  By plotting the graphs of y x=  and cosy x=  
we can see that they cross only once, therefore there is only one root of cos x x= .   
 
$5	������@�� Find the positive root of 10 5x x= +  to one decimal place.  
 
We are told to find the positive root to the equation, so we need not bother with 
calculating the value of the function for negative x. Let us calculate 

( ) ( ) ( ) ( )0 , 1 , 2 ,  3 ,...f f f f  until we find a sign change. 
 

( ) 00 10 0 5 4 0f = − − = − < , ( )1 10 1 5 4 0f = − − = > , so we can say that the root lies 
between 0x =  and 1x = . Now we consider the function at 0.5x = . 
 

( )0.5 2.34 0f = − < , so we can say that the root lies between 1x =  and 0.5x = . Now we 
consider the function at 0.75x = . 
 

( )0.75 0.127 0f = − < , so we can say that the root lies between 1x =  and 0.75x = . Now 
we consider the function at 0.875x = . 
 

( )0.875 1.623 0f = > , so we can say that the root lies between 0.75x =  and 0.875x = . 
Now we consider the function at 0.8125x = . 
 

( )0.8125 0.6813 0f = > , so we can say that the root lies between 0.75x =  and 
0.8125x = . Now we consider the function at 0.7813x = . 

 
( )0.7813 0.2624 0f = > , so we can say that the root lies between 0.75x =  and 

0.7813x = . Now we consider the function at 0.7657x = . 
 

( )0.7657 0.0647 0f = > , so we can say that the root lies between 0.75x =  and 
0.7657x = . Now we consider the function at 0.7579x = . 
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( )0.7579 0.0313 0f = − < , so we can say that the root lies between 0.7657x =  and 

0.7579x = .  
 
At this stage, we can say that the root of 10 5x x= +  is 0.8 to one decimal place. 
�

 
 
 
 

�5�������
�)
��	
��� 
 
To solve the equation ( ) 0f x = , we may rearrange this into the form ( )x xφ=  so that if 

x satisfies ( ) 0f x = , then it also satisfies ( )x xφ= . Then the fixed point iteration is the 

computation ( )1n nx xφ+ = . This sounds rather complicated, so let us consider an example. 
 
$5	������@�/ Using the fixed point iteration method, solve the equation 
cos 0x x− = . 
 
The first step is to rearrange the equation cos 0x x− =  into the form 

some function of x x= . The most obvious way to do this is to arrange it into the form 
cosx x= . Now, the iteration formula is 1 cosn nx x+ = . We start with an initial guess to the 

root, 0x . Let us make our initial guess 0 0.7x = . We then feed the initial guess into the 
iteration formula, to produce a better approximation of the solution, 1x . We then feed 1x  
into the iteration formula to produce a better approximation, 2x .  
 
So, 1 0cosx x=  with initial guess 0 0.7x = , we get ( )1 cos 0.7 0.7648x = = . 
 

( )2 1cos cos 0.7648 0.7215x x= = =    ( )8 7cos cos 0.7370 0.7405x x= = =  
 

( )3 2cos cos 0.7215 0.7508x x= = =    ( )9 8cos cos 0.7405 0.7381x x= = =  
 

( )4 3cos cos 0.7508 0.7311x x= = =    ( )10 9cos cos 0.7381 0.7397x x= = =  
 

( )4 3cos cos 0.7508 0.7311x x= = =    ( )11 10cos cos 0.7397 0.7387x x= = =  
 

( )5 4cos cos 0.7311 0.7444x x= = =    ( )12 11cos cos 0.7387 0.7394x x= = =  
 

( )6 5cos cos 0.7344 0.7422x x= = =  
 

"��
��@*' Find the positive root of 4 32 1 0x x− − =  to two decimal places.�
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( )7 6cos cos 0.7422 0.7370x x= = =  
 
 
We can see that after 12 iterations, the approximation is settling down to a number 
around 0.739. 
 

 
 
 
 
Often, there is more than one way to rearrange a given equation into the form 

some function of x x= . Depending on how we do this, the iteration may or may not 
converge. Some rearrangements lead to iterations that converge much faster than others.  
 
Suppose, in example 3.36, we decided to rearrange the equation cos 0x x− =  as 

1 1
cos

2 2
x x x= +  (check that this is a correct rearrangement). Performing the iteration 

1

1 1
cos

2 2n n nx x x+ = +  with initial guess 0 0.7x =  gives: 

 

( )1

1 1
0.7 cos 0.7 0.7324

2 2
x = × + =  

 

( )2

1 1
0.7324 cos 0.7324   0.7379

2 2
x = × + =  

 

( )3

1 1
0.7379 cos 0.7379 0.7389

2 2
x = × + =  

 

( )4

1 1
0.7389 cos 0.7389 0.7390

2 2
x = × + =  

 
 

fig. 3.41 

fig. 3.41 illustrates the iteration process. 
We can see in this case that the 
iterations produce better and better 
approximations each time – we can see 
this in the diagram because the arrows 
are getting closer and closer to the 
required root. The diagram in fig. 3.41 
is sometimes called a cobweb 
diagram. When the iterations get 
closer and closer to the required root, 
we say that the iteration converges.  
 
Iterations do not always converge, as 
we will see later. 

y x=

cosy x=
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Finally consider the equation cos 0x x− =  rearranged as 
3 1

cos
2 2

x x x= −  (check that 

this is a correct rearrangement). Performing the iteration 1

3 1
cos

2 2n n nx x x+ = −  with initial 

guess 0 0.7x =  gives: 
 

( )1

3 1
0.7 cos 0.7 0.6676

2 2
x = × − =  

 

( )1

3 1
0.6676 cos 0.6676 0.6087

2 2
x = × − =  

 

( )2

3 1
0.6087 cos 0.6087 0.5029

2 2
x = × − =  

 

( )3

3 1
0.5029 cos 0.5029  0.3162

2 2
x = × − =  

 
 

This time we can see that after just 4 
iterations, the approximation is settling 
down to a number around 0.739. So this 
particular rearrangement leads to a process 
which converges much faster than before. 
 
fig. 3.42 illustrates the iteration process. 
We can see that this rearrangement leads to 
a much faster convergence. Illustrations of 
this kind are sometimes called staircase 
diagrams.  
 
 

1 1
cos

2 2
y x x= +

y x=

fig. 3.42 
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"�����������
�+��� 
 
This is a method of finding the approximate value of the integral of a function when the 
function in question can not be integrated analytically. The general method is to 
approximate the area under the graph of ( )f x  by splitting the area up into simple shapes 
(rectangles) that we can easily find the area of.  
 
Let us consider a simple example. Suppose we want to find the area under the graph of 

( ) 2f x x=  between the points 0x =  and  5x =  (of course, we can actually find this area 

analytically, it is 
5 2

0
d 41.67x x =�  (check)). One way of proceeding would be to take the 

mid point of the limits of integration (
0 5

2.5
2
+ = ) and use the area of the rectangle 

illustrated in fig. 3.43, with width 5 and height ( )2.5 6.25f = , to approximate 
5 2

0
dx x� .  

 

In this case, the iteration does not take us 
closer and closer to the desired root. In fact, 
it takes further and further away from the 
desired root. This is illustrated in fig. 3.43. 
In cases like this, we say that the iteration 
diverges. 

fig. 3.42 

y x=

3 1
cos

2 2
y x x= −

"��
��@*� Use a suitable iteration to find the positive root 
of the equation 2 sin 1x x+ =  correct to 2 decimal places. 

http://www.studyguide.pk
www.studyguide.pk
http://www.studyguide.pk


  

 

137 
 

 
 
 
unit, as shown in fig. 3.44 (these strips are sometimes called ordinate strips). We then 
take the mid point and use the value of the function evaluated at the mid point as the 
height of each strip. We then add up the area of all the strips to get our approximation. 
 

 
 
 
 
We can see that the shaded area shown in fig. 3.44 is given by: 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 0 0.5 2 1 1.5 3 2 2.5 4 3 3.5 5 4 4.5A f f f f f= − × + − × + − × + − × + − ×  
 
    2 2 2 2 21 0.5 1 1.5 1 2.5 1 3.5 1 4.5= × + × + × + × + ×  
 
    41.25= . 
 
So, with 5 ordinate strips we get a reasonably good result. We could improve the result 
further by increasing the number of ordinate strips. 
 
Now let us state the general result. 
  

( ) 2f x x=

fig. 3.43 

So, the shaded area is given by: 
 

( ) ( )5 0 2.5 31.25A f= − × = . 
 
This is not a very accurate 
approximation (the true answer is 41.67 
to 2 d.p.). We can improve the accuracy 
by splitting the area up into a greater 
number of rectangles.  
 
Let us split the area under the graph of 

( ) 2f x x=  into 5 strips of width one 

fig. 3.44 

( ) 2f x x=

Here, the lines 0,  1,  ..., 5x x x= = =  are 
the ordinates (6 of them). There are 5 
ordinate strips. 
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�
$5	������@�! Use the mid point rule to approximate the area under the graph of 

( )
1
2 xf x x e=  from 2x =  to 7x =  with 6 ordinates (5 ordinate strips). 

 

The 5 ordinates are: 1 2x = , 2

7 2
2 3

5
x

−� �= + =� �
� �

, 3 4x = , 4 5x = , 5 6x = , 6 7x = . Notice 

that in general, nx a nh= + , where 
1

a b
h

n
−=
−

, the width of each ordinate strip. 

 
Using the formula above, we have: 
 

1
7

2
2

2 3 3 4 4 5 5 6
d

2 2 2 2
xx e x f f f f

+ + + +� � � � � � � �≈ + + +� � � � � � � �
� � � � � � � �

�  

 
                2.5 3.5 4.5 5.52.5 3.5 4.5 5.5e e e e= × + × + × + ×  
 
                846.02=  to 2 d.p. 

 
 
 
 
 
 
 
 

The Mid Point Rule:  
 

( ) 2 3 3 4 11 2 d ...
1 2 1 2 1 2 1 2

b
n n

a

x x x x x xx xa b a b a b a b
f x x f f f f

n n n n
−+ + ++− − − −� � � � � �� �≈ + + + +� � � � � � � �− − − −� � � � � � � �

�
 
 
Where 1 2, , ..., nx a x x b= =  are the ordinates (n of them). There are 1n −  ordinate strips 

each of width 
1

a b
n

−
−

. 

"��
��@** Use the mid point rule to approximate 
16 2

4
1  dx x+�  with 6 ordinate 

strips (7 ordinates)�
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�������<��+��� 
 
Simpson’s rule is similar to the mid point rule, except that the function is approximated 
by a quadratic polynomial between each ordinate strip. We will not give details of the 
derivation here, we will simply state the result and use it. 

 
 

We can see that 
3
h

 multiplies every term in the bracket. Inside the bracket, ( )1f x , the 

function evaluated at the first ordinate, and ( )nf x , the function evaluated at the last 
ordinate, are added together. The function evaluated at each even ordinate (except the last 
ordinate nx  if n is even) is multiplied by 4. The function evaluated at each odd ordinate 
(except the first ordinate, 1x ) is multiplied by 2. 
 

$5	������@�� Using Simpson’s rule with 5 ordinates, approximate 
1

2
0

1
 d

1
x

x +� . 

Here we have ( ) 2

1
1

f x
x

=
+

. The lower limit of integration is 0a = . The upper limit of 

integration is 1b = . 
1 0 1
5 1 4

h
−= =
−

. So we have 1 0x = , 2 1

1 1
0

4 4
x x h= + = + = , 

3 1

2 1
2 0

4 2
x x h= + = + = ,… and so on. The table below show all the necessary values for 

the calculation. 
 
 
 
 
 
 
 

Simpson’s Rule 
 

( ) ( ) ( ) ( )( ) ( )( )1 even odd d 4 2
3

b

na

h
f x x f x f x f x f x� 	≈ + + +� �  

Where n is the number of ordinates, 
1

b a
h

n
−=
−

 is the width of each ordinate strip, 

1 , nx a x b= = , ( )evenf x  represents f evaluated at each  of the even ordinates (except at nx  if n 

is even) and ( )oddf x  represents f evaluated at each of the odd ordinates (except at 1x ). 

( )1 1ix x i h= + − . 
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ix  1 0x =  
 2

1
4

x =  

 

3

1
2

x =  

 

4

3
4

x =  

 

5 1x =  
 

 
( )if x  

 

2

1
1

0 1
=

+
 

 

2

1

1
1

4
� � +� �
� �

 

 

 

2

1

1
1

2
� � +� �
� �

 

 

2

1

3
1

4
� � +� �
� �

 

 
1
2

 

�
Substituting the above values into Simpson’s rule gives: 
 

1

2 2 22
0

1 1 4 2 4 1
 d 1

1 12 21 1 3
1 1 1

4 2 4

x
x

� 	

 �

 �≈ + + + +

 �+ � � � � � �+ + +
 �� � � � � �

� � � � � �� 

�  

 
                   0.785=  to 3 d.p.�
�

$5	������@�2 Using Simpson’s rule with 5 ordinates, approximate 
3 2

1
 dxe x−

� . 

 

( ) 2 ix
if x e−= . 

3 1 1
5 1 2

h
−= =
−

. 

1 2 1 3 2 4 3 5 4

1 1 1 1
1,  1 1.5,   1.5 2,  2 2.5,  2.5 3

2 2 2 2
x x x h x x h x x h x x h= = + = + = = + = + = = + = + = = + = + =

 

ix  1 
 

1.5 
 

2 
 

2.5 
 

3 
 

 
( )if x  

 
2e−  

 
3e−  

 

 
4e−  

 
5e−  

 
6e−  

 
 
By Simpson’s rule we have  
 

( )3 2 1 3 4 5 6

1

1 1
4 2 4

3 2
xe e e e e e− − − − − −≈ × + + + +�  

 
           0.066≈  to 3 d.p 
 

"��
��@*� Use Simpson’s rule with 4 
ordinate strips to find an approximate 

value for 
9

1
ln  dx x� �
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"��
��@*/ TRICKY! You are stranded in a magical forest. The wizard will allow you to return 
home only if you can tell him an approximate value of ln 2  (a fractional approximation is valid). 
You cannot remember the value of ln 2 . You do not have a calculator – only a stick to write in 
the soil. How could you come up with an approximation for ln 2 ? Try it. Hint: think of a suitable 
definite integral and use Simpson’s rule. Hint: remember, ln1 0= . Answer: if you use the same 

method as I did with n = 7 you get the fractional approximation 
14411

ln 2
20790

≈ .�
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����
�� �! �� &2� �, ����� ���) # ��� �! �� &2� �, ����� ���) # ��� �! �� &2� �, ����� ���) # ��� �! �� &2� �, ����� ���) # �����������������������������������������

 
 
  

�
	�� � �� ����� � �* ( � ) ��� � #�
	�� � �� ����� � �* ( � ) ��� � #�
	�� � �� ����� � �* ( � ) ��� � #�
	�� � �� ����� � �* ( � ) ��� � # ����
 
������������+	
���	��$5��������� 
 
When working with algebraic rational expressions, it is always worth checking whether 
any cancellation will lead to a simpler expression. This may include first factorising the 
numerator and/or denominator where possible. 
 

$5	�����*@� Simplify the expression 
2

2

6 9
4 12 9

x x
x x

+
+ +

. 

 
First we notice that both the numerator and the denominator can be factorised,  
 

( )
( )( )

2

2

3 2 36 9
4 12 9 2 3 2 3

x xx x
x x x x

++ =
+ + + +

 

 
Now we can divide numerator and denominator by 2 3x + , 
 

( )
( )( )

3 2 3 3
2 3 2 3 2 3

x x x
x x x

+
=

+ + +
. 

 

$5	�����*@' Simplify the expression 
2

3 2

3
9 6

x x
x x x

−
− +

. 

 
Dividing numerator and denominator by x gives,  
 

2

3 2 2

3 3 1
9 6 9 6 1

x x x
x x x x x

− −=
− + − +

. 

 
Factorising the denominator gives, 
 

( )22

3 1 3 1 1
9 6 1 3 13 1

x x
x x xx

− −= =
− + −−

. 

�
 
 "��
�*@� Simplify the expression 

2

3

3 13 14
2 8

x x
x x
− +

−
�
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4���6�	���#�%����� 
 
Whenever an algebraic fraction has a numerator with a higher degree (or the same degree) 
as the denominator, it is possible to divide the denominator into the numerator. For 

example, 
5

2
3

x
x

x
= . Since the numerator has degree five, which is higher than the degree 

of the denominator, we can divide the denominator into the numerator. For more 
complicated examples, there is a method of dividing algebraic quotients which is very 
similar to the method of long division for numbers. Below is a worked example. 
�
$5	�����*@� By dividing the denominator into the numerator, simplify the 

expression 
3 22 3 2 2

2
x x x

x
− − +

−
. 

 
Since the degree of the numerator is three, which is greater than the degree of the 
denominator, we can divide the denominator into the numerator by dividing ‘highest 
power into highest power’ as follows, 
 

2

3 2

3 2

2

2

2                 
2 2 3 2 2

         2 4

                     2 2

                     2      
                                    2

x x
x x x x

x x

x x

x x

+
− − − +

−
− +
−

 

 
This tells us that 2x −  goes into 3 22 3 2 2x x x− − + , 22x x+  times with remainder 2, i.e.  
 

3 2
22 3 2 2 2

2
2 2

x x x
x x

x x
− − + = + +

− −
. 

 
$5	�����*@* By dividing the denominator into the numerator, simplify the 

expression 
3 28 2 3 3

2 1
x x x

x
− − +

+
. 

 
The working is shown below,  
 
 

"��
�*@' Simplify the expression 
2

2

9 25
9 30 25

x
x x

−
+ +

�
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2

3 2

3 2

2

2

4 3                 
2 1 8 2 3 3

             8 4

                    6 3 3

                     6 3      
                                        3

x x
x x x x

x x

x x

x x

−
+ − − +

+
− − +
− −

 

 

So, we have that 
3 2

28 2 3 3 3
4 3

2 1 2 1
x x x

x x
x x

− − + = − +
+ +

. 

 
�	�
�	���	�
���� 
 
We are easily able to add several fractions together to form one fraction, for example, 
 

( ) ( )
( ) ( )

3 3 7 2 23 2
2 3 7 2 3 7

x x

x x x x

+ + −
+ =

− + − +
 

 

                         ( )( )
9 21 2 4

2 3 7
x x
x x

+ + −=
− +

 

 

                          ( ) ( )
11 17
2 3 7
x

x x
+=

− +
 

 

                           2

11 17
3 14

x
x x

+=
+ −

 

 

If we were given that fraction 2

11 17
3 14

x
x x

+
+ −

 could we split this up into the two fractions 

we started with? To do this we need to use the method of partial fractions. Partial 
fractions is essentially the reverse of the process of adding together fractions as shown 
above. Partial fractions allows us to take an algebraic fraction and split it up into several 
fractions (where possible). We will look at three basic types of algebraic fractions that 
can be decomposed by using partial fractions. 
 
TYPE I: The denominator consists of a multiple of linear factors of the form ( )ax b+ .   
 

$5	�����*@� The fraction ( )( )
7 3
1 2 3

x
x x

+
− +

 consists of a multiple of linear factors of 

the form ( )ax b+  in the denominator. Notice that the numerator is of a lower degree than 
the denominator. The fraction can be split up as follows: 
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( )( )
7 3
1 2 3 1 2 3

x A B
x x x x

+ ≡ +
− + − −

. 

 
 Our aim is to find A and B. Adding together the RHS gives: 
 

( )( )
( ) ( )
( ) ( )
2 3 17 3

1 2 3 1 2 3
A x B xx

x x x x

+ + −+ ≡
− + − +

 

 
Now, the above expression is an identity, so we can compare numerators and say that: 
 

( ) ( )7 3 2 3 1x A x B x+ ≡ + + −  
 
Now we notice that if we set 1x = , it will eliminate the ( )1x −  term, and therefore B, 
allowing us to find A.  
 
Setting  1x =  gives: 
 
10 5 2��� ���A A= � =  
 
So we can now say that 
 

( ) ( )7 3 2 2 3 1x x B x+ ≡ + + − . 
 

Now, we could set 
3
2

x = −  to eliminate the ( )2 3x +  term and allow us to find B, but 

there is another technique that we can use. Since we have an identity, for example the 
number of x terms on the LHS must equal the number of x terms on the RHS. On the 
LHS, we have 7 lots of x; on the RHS we have 4 B+  lots of x. So, we can say: 
 
7 4 3��� ���B B= + � = . We call this technique comparing coefficients.  
 
We have now solved the problem,  
 

( )( )
7 3 2 3
1 2 3 1 2 3

x
x x x x

+ ≡ +
− + − −

. 

 

$5	�����*@/�Express 2

11 19
2 3

x
x x

− −
+ −

 in partial fraction form. 

 
Our first job is to factorise the denominator. 
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( ) ( )2

11 19 11 19
2 3 2 3 1

x x
x x x x

− − − −=
+ − + −

. 

 
Now we express this in the form 
 

( ) ( )
11 19

2 3 1 2 3 1
x A B

x x x x
− − ≡ +

+ − + −
 

 
Adding the two fractions on the RHS gives,  
 

( ) ( )
( ) ( )
( ) ( )

1 2 311 19
2 3 1 2 3 1

A x B xx
x x x x

− + +− − ≡
+ − + −

 

 
Equating numerators gives,  
 

( ) ( )11 19 1 2 3x A x B x− − ≡ − + +  
 
Setting 1x =  gives,  
 

30 5 6��� ���B B− = � = −  
 
Comparing coefficients of x gives,  
 

11 12 1��� ���A A− = − � =  
 
So we have,  
 

( ) ( )
11 19 1 6

2 3 1 2 3 1
x

x x x x
− − ≡ −

+ − + −
. 

 
TYPE II: The denominator consists of a quadratic expression of the form 2ax bx c+ +  
which cannot be factorised into linear factors.  
�

"��
�*@� Using partial fractions, express 2

7 26
2 8

x
x

− −
−

 in the form 
2 4 2

A B
x x

+
+ −

 

where A and B are constants to be determined�

"��
�*@* Using partial fractions, express 2 2

1
x a−

, where a is a constant as a sum of 

two fractions�
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$5	�����*@! Split 
( )( )

2

2

9 35 8
4 2 2
x x

x x x
− +

− − −
 up into partial fractions. 

 
Notice that the denominator contains the term 2 2 2x x− −  which cannot be factorised. 
This type of fraction can be split up into the following form: 
 

( ) ( )
2

22

9 35 8
4 2 24 2 2

x x A Bx C
x x xx x x

− + +≡ +
− − −− − −

 

 

                                  
( ) ( ) ( )

( )( )
2

2

2 2 4

4 2 2

A x x Bx C x

x x x

− − + + −
≡

− − −
 

 
So we must have that ( ) ( )( )2 29 35 8 2 2 4x x A x x Bx C x− + ≡ − − + + − .  

 
Setting 4x =  gives,  
 
12 6 2��� ���A A= � = . 
 
Comparing coefficients of 2x  gives,  
 
9 7��� ���A B B= + � = . 
 
Comparing constants gives,  
 
8 2 4 3��� ���A C C= − − � = − . 
 
S, we have found that 
 

( ) ( )
2

22

9 35 8 2 7 3
4 2 24 2 2

x x x
x x xx x x

− + −≡ +
− − −− − −

. 

 

 
TYPE III: The denominator contains repeated linear terms, for example ( )2

ax b+ . 
 

$5	�����*@� Express 
( )( )

2

2

2 29 11

2 1 2

x x

x x

+ −
+ −

 in partial fractions.  

"��
�*@* Write the fraction 
( ) ( )

2

2

3 8 7
2 1 3 5

x x
x x x

− +
− − +

 in the form 22 1 3 5
A Bx C

x x x
++

− − +
 

where A and B are constants to be determined�

http://www.studyguide.pk
www.studyguide.pk
http://www.studyguide.pk


  

 

148 
 

In this example, the partial fraction form is as follows,  
 

( )( ) ( )
2

2 2

2 29 11
2 1 22 1 2 2

x x A B C
x xx x x

+ − ≡ + +
+ −+ − −

   

 
In the denominators on the RHS, we have a linear factor on its own, 2x − , and a repeated 
linear factor, ( )22x − . Adding together the RHS gives,  
 

( )( )
( ) ( )( ) ( )

( ) ( )

22

2 2

2 2 1 2 2 12 29 11

2 1 2 2 1 2

A x B x x C xx x

x x x x

− + + − + ++ − ≡
+ − + −

 

 
So we must have,  
 

( ) ( ) ( ) ( )222 29 11 2 2 1 2 2 1x x A x B x x C x+ − ≡ − + + − + + . 
 

Setting 
1
2

x = −  gives,  

 
2 2

1 29 5
2 11 4

2 2 2
��� ���A A� � � �− − − = − � = −� � � �

� � � �
 (after some work) 

 
Setting 2x =  gives us that 11C =  (after some work). 
 
Comparing coefficients of 2x  gives,  
 
2 2 3��� ���A B B= + � = . 
 
So we have found that,  
 

( )( ) ( )
2

2 2

2 29 11 4 3 11
2 1 22 1 2 2

x x
x xx x x

+ − ≡ − + +
+ −+ − −

. 

 
 
 
 
 

"��
�*@� Express the fraction 
( )2

18 20

3 4

x

x

+
+

 in the form 
( )23 4 3 4

A Bx C
x x

++
+ +

, where A, B 

and C are constants to be determined�
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An important point to make is that in order to express a quotient in partial fraction form, 
the numerator must be at least one degree less than the denominator. If this is not the case 
we must first ‘do the division’ as illustrated in the next example.  
 

$5	�����*@2 Express 
2

2

5
2 3

x x
x x

+ −
− −

 in partial fraction form. 

 
Since the numerator is not of a lower order than the denominator, we can divide the 
denominator into the numerator.  
 

2 2

2

1
2 3 5

2 3
3 2

x x x x

x x

x

− − + −

− −
−

���������������������

������������������������������

 i.e. 
2

2 2

5 3 2
1

2 3 2 3
x x x
x x x x

+ − −≡ +
− − − −

. 

 

Now we can work on the fraction 2

3 2
2 3

x
x x

−
− −

 by factorising the denominator and using 

partial fractions in the usual way.  
 
Below is a summary of the partial fraction forms. 
 
 
 
 
 
 
 
 
 
 
 

"��
�*@/  Express the fraction 
( ) ( )

2

2

8 3

2 1

x x

x x

+ −
+ −

 in the form 
( )22 1 1

A B C
x x x

+ +
+ − −

, 

where A, B and C are constants to be determined�

"��
�*@! Given that 
( ) ( ) ( ) ( )
2

3 2 3

5 13 5
22 2 2

x x A B C
xx x x

− + ≡ + +
−− − −

, where A, B and C 

are constants, find the values of A, B and C�

http://www.studyguide.pk
www.studyguide.pk
http://www.studyguide.pk


  

 

150 
 

y 

x 

P 

rcos� 

rsin� 
� 

r 

Denominator 
containing 

Expression 
 

Form of partial fractions 
 

 
 
Linear factors 
 
 
Repeated linear 
factors 
 
 
Quadratic 
factors 
 
 
 
General 
example 

 
( )

( )( )( )
f x

x a x b x c+ + +
 

 
( )

( )3

f x

x a+
 

 
( )

( )( )2

f x

ax bx c x d+ + +
 

 
( )

( )( ) ( )22

f x

x a x b x c+ + +
 

 

( ) ( ) ( )
A B C

x a x b x c
+ +

+ + +
 

 

( ) ( ) ( )2 3

A B C
x a x a x a

+ +
+ + +

 

 

( ) ( )2

Ax B C
x dax bx c

+ +
++ +

  

 

( ) ( ) ( ) ( )22

Ax b C D E
x b x cx a x b

+ + + +
+ ++ +

 

 

����
�
���� � �� �� ����� �� � ������� �����-�
���� � �� �� ����� �� � ������� �����-�
���� � �� �� ����� �� � ������� �����-�
���� � �� �� ����� �� � ������� �����-""""....�����/�0 ��� ��/�0 ��� ��/�0 ��� ��/�0 ��� ��
 
 
�	�	��
����	����	�
���	��$��	
�����
�

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
However, there is an alternative method of defining the position of P. We can define the x 
and y coordinates of P by defining the distance in the x and y direction from the origin in 
terms of the radius r and a new variable, �, which is the angle the radius makes with the 
x-axis. We can see that: 
 

Consider a circle with radius r and centre at the 
origin. We have seen that we can express any 
point on the circle, for example the point P, in 
terms of it’s x-y coordinates. We can define the 
position of P by writing the equation of the circle 
in the form 2 2x y r+ = . This is called a 
Cartesian equation (after the French philosopher 
and mathematician René Descartes, 1596 – 
1650). It is an equation which defines the 
relationship between the x and y coordinates (and 
some constant, r).  

fig. 4.1 
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cosx r θ=  and siny r θ= . 
 
This new way of expressing the position of a point on a circle involves a new variable, �. 
� is called a parameter, since it is a variable which appears both in the expression for the 
x-coordinate and the y-coordinate. The previous equation is an example of a parametric 
equation (with parameter �). Sometimes it turns out to be more convenient to work with 
parametric equations rather that Cartesian equations, and sometimes it is necessary to 
convert from one form to another, depending on which form is most convenient for a 
particular calculation. We introduced parametric equations with the example of a circle; it 
is also possible to paramatise parabolas and straight lines as shown in the next examples.  
 
$5	�����*@� Find the Cartesian form of the following pair of parametric equations,  
 
 2x t= −   2 9y t= − . 
 
In questions like this, we usually proceed by using one of the equations to express t in 
terms of either x or y and then substitute this for t in the other equation. In this example, 
let us use the first equation to write t in terms of x. We can see that, 
 
 2t x= + . 
 
Substituting this for t in the second equation gives,  
 
 ( )2 2 9y x= + −  
 
  2 4 9x= + −  
 
  2 5x= −  
 
So, we have arrived at the Cartesian form of the equation, 2 5y x= − . 
 
$5	�����*@' Find the Cartesian form of the following pair of parametric equations,  
 
 2 1x t= − ………………..(1) 
 212 14 6y t t= − + ………..(2) 
 
In this example, it is easiest to express t in terms of x using (1). Doing this we get,  
 

 
1

2
x

t
+= . Substituting for t in (2) gives,  

 
2

1 1
12 14 6

2 2
x x

y
+ +� � � �= − +� � � �

� � � �
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2 2 1
12 7 7 6

4
x x

x
� �+ += − − +� �
� �

 

 
23 6 3 7 7 6x x x= + + − − +  

 
23 2x x= − +      

 
So, we have arrived at the Cartesian form, 23 2y x x= − + . 
 
$5	�����*@� Find the Cartesian form of the following pair of parametric equations,  
 

 
1

1
x

t
=

−
………………..(1) 

  

 
1

7 5
y

t
=

−
…………..…..(2) 

 

From (1) we can see that ( ) 1
1 1 1��� ��� ��� ���

x
x t x tx t

x
−− = � − = � = . Substituting this into 

(2) gives,  
 

1 1
7 71 57 5

y
xx
xx

= = −−� � −−� �
� �

 

 

   
1

7 7 5 2 7
x

x x x
x

= =− − −
. So, we have arrived at the Cartesian form, 

2 7
x

y
x

=
−

. 

�

����

"��
�*@� Find the Cartesian form of the following pair of parametric 
equations, 2x t=  and 28 5y t= + �

"��
�*@' Find the Cartesian form of the following pair of parametric 

equations,
1 3

t
x

t
=

−
 and 

1 2
t

y
t

=
+

 �
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�
��&�' ( �� ) �# ��� � �&����#�
��&�' ( �� ) �# ��� � �&����#�
��&�' ( �� ) �# ��� � �&����#�
��&�' ( �� ) �# ��� � �&����# �

 

-�����	��$5�	������

�
)�
�����
����

�

Expand the following: ( )21 x+ , ( )31 x+ , ( )41 x+ . We can see that the expansion of 

( )1 n
x+  becomes very laborious as n increases beyond 3. Clearly, trying to expand 

( )71 x+ would be a very long and boring calculation. By the end of this section, we will 

be able to calculate ( )71 x+  quickly and easily.  
 
In the three expansion questions posed above, you should see that the constant in each 
expansion is 1. Why is this? Let us look at the example ( )21 x+ ,  
 

( ) ( )( )2 21 1 1 1x x x x x x+ = + + = + + +   
 
There is only one way in which we can get a constant term, and that is from the two 
constant terms from the liner factors multiplied together, as shown above.  
 
 

( ) ( )( )2 21 1 1 1x x x x x x+ = + + = + + +  
 

There are two ways in which we can get an x term, as shown above.  

( ) ( )( )2 21 1 1 1x x x x x x+ = + + = + + +  

 

There is one way in which we can get an 2x  term, as shown above.  

In calculating ( )21 x+ , there are a total of four multiplications needed, as indicated by the 
four arrows in the diagrams above. Thus we have found that there is one way (out of four 
total multiplications) in which we can get a constant, two ways (out of four total 
multiplications) in which we can get an x terms and one way (out of four total 
multiplications) in which we can get an 2x  term. You may like to consider the case 

( )31 x+  and see how many multiplications are necessary to evaluate this. You can also 
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work out how many different ways you can get constant terms, x terms, 2x  and 3x  terms. 
It turns out that there is a special pattern between the coefficients of the powers of x in the 
expansion of ( )1 n

x+ . We will look at this pattern next. 

�	��	�<��"��	���� 
 
fig. 4.2 shows the first part of Pascal’s triangle (named after the French mathematician 
and philosopher Blaise Pascal (1623 – 1662). Each number in the triangle is obtained by 
adding together the two numbers directly above. 
 

� �

� �

� �

�
�

�
�

�
�

�  

 
 
The second row is 1  1; these are the coefficients of ( )11 x+ . The third row is 1  2  1, 

these are the coefficients of ( )21 1 2 1x x+ = + + . The fourth row is 1  3  3  1, these are the 

coefficients of ( )3 2 31 1 3 3x x x x+ = + + + . From Pascal’s triangle, what is the expansion 

of ( )61 x+ ? From the triangle, we can see that the coefficients are 1  6  15  20  15  6  1, so 

the expansion is ( )6 2 3 4 5 61 1 6 15 20 15 6x x x x x x x+ = + + + + + + . By filling in the next 

row of Pascal’s triangle, write down the expansion of ( )71 x+ . Pascal’s triangle can also 

be used to expand an expression of the form ( )n
a bx± , for example ( )52 3x−  may be 

written as 
5

5 3
2 1

5
x� �� �+ −� �� �

� �� �
, we can write X in place of 

3
5
x� �−� �

� �
, so we have 

( ) ( )5 552 3 2 1x X− = +  and expand this in the usual way, remembering to replace X with 

3
5
x� �−� �

� �
 at the end. We will now develop a formula for expanding ( )1 n

x+ , but first we 

need some to introduce some new concepts.  
 
-�����	������������
� 
 
The factorial of a positive integer, n, denoted n! is defined by, 
 

( ) ( ) ( )! 1 2 3 ...1n n n n n= − − −  
 

fig. 4.2 
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For example, 3! 3 2 1 6= × × = , 4! 4 3 2 1 24= × × × = . We define the factorial of zero to be 
one, i.e. 0! 1= . 
 
Next we introduce the binomial coefficient notation,  
 

( )
!

! !

a a
b b a b
� �

=� � −� �
 

 
For example,  
 

( )
5 5! 5 4 3 2 1

10
3 3! 5 3 ! 3 2 1 2 1
� � × × × ×= = =� � − × × × ×� �

 

 

( )
6 6! 6 5 4 3 2 1

6
1 1! 6 1 ! 1 5 4 3 2 1
� � × × × × ×= = =� � − × × × × ×� �

 

 

The binomial coefficient 
n

r
� �
� �
� �

 is sometimes written as n
rC . On your calculator you 

should find a button labeled  or . For example, pressing  followed by  

 followed by    on your calculator should return the answer 126.  
 
 
 
 
 

 
-�����	��$5�	����� 
 
We are now ready to state the general formula. We have not proved this formula here, but 
you can see from the previous examples that a detailed combinatorial analysis of the 
expansion of ( )1 n

x+  is possible. Such a detailed analysis leads to the following result: 
 

( ) 2 31 ...
0 1 2 3

n nn n n n n
x x x x x

n
� � � � � � � � � �

+ = + + + + +� � � � � � � � � �
� � � � � � � � � �

 

 
This can be written in sigma notation as,  
 

 
 
………………(†) 

n
rC  

n
rC  

The binomial coefficients 
a

b
� �
� �
� �

 give the 

number of ways of choosing a objects from 
a set of b objects. For example, in how 
many ways can a committee of 4 people be 
formed from a group of 9 people? The 

answer is 
9

126
4
� �

=� �
� �

 ways.  

9 nCr 

4 

"��
�*@' Calculate 
4
2
� �
� �
� �

 and 
7
3
� �
� �
� �
�

( )
0

1 �

n
n r

r

n
x x

r=

� �
+ = � �

� �
�  

http://www.studyguide.pk
www.studyguide.pk
http://www.studyguide.pk


  

 

156 
 

 
 
This can also be equivalently written as,  

 
Check that you can get from (†) to the above form.  
 
We have already commented that any expression of the form ( )n

a bx±  can be expressed 

in the form ( )1 n
A Bx± , and so the above formulas can be used to expand anything in the 

form ( )n
a bx± . Sometimes, however, the result for the expansion of ( )n

a bx+  is stated 
separately (b may be negative). This result is stated below,  

 
 
 
 
 

 
Or, alternatively,  

 
$5	�����*@* Expand ( )62 x+ . 
 
There is more than one way to do this. You could use Pascal’s triangle for example, but 
we will use the general formula we have stated above. 
 

( )6 6 5 4 2 3 3 2 4 5 66 5 6 5 4 6 5 4 3 6 5 4 3 2 6 5 4 3 2 1
2 2 6 2 2 2 2 2

2! 3! 4! 5! 6!
x x x x x x x

× × × × × × × × × × × × × × ×+ = + × × + × × + × × + × × + × × + ×

          
           2 3 4 5 664 192 240 160 60 12x x x x x x= + + + + + +  
 
$5	�����*@� Expand ( )51 2x− . 
 
It is easy to make a mistake when the x term inside the bracket is negative. Make sure 
you use brackets correctly and the whole term, 2x− , gets raised to a power in each step 
of the calculation.  
 

( ) ( ) ( )( ) ( )( )( )2 3 41 1 2 1 2 3
1 1 ...

2! 3! 4!
n nn n n n n n n n n

x nx x x x x
− − − − − −

+ = + + + + + +  

( ) ( )
0

���
��

n
n r

r

n
a bx bx

r=

� �
+ = � �

� �
�  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )2 3 41 2 3 41 1 2 1 2 3
...

2! 3! 4!
n nn n n n nn n n n n n n n n

a bx a na bx a bx a bx a bx bx− − − −− − − − − −
+ = + + + + + +  
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( ) ( ) ( ) ( ) ( ) ( )5 2 3 4 55 4 5 4 3 5 4 3 2
1 2 1 2 2 2 2 2

2! 3! 4!
x x x x x x

× × × × × ×− = + − + × − + × − + × − + −  

 
2 3 4 51 2 40 80 80 32x x x x x= − + − + −  

 
Notice that when the x term inside the bracket is negative, we get an alternating series as 
the answer (since a negative number raised to an even power is positive, whilst a negative 
number raised to an odd power is negative). It is worth while checking this when you 
have finished a problem of this type, to make sure you have not made a mistake with the 
signs.  
 
$5	�����*@/ What is the coefficient of 6x  in the expansion of ( )93 x− ? 
 
It would be a waste of time to expand the whole thing in this example, since we are only 
interested in the coefficient of 6x , and none of the other terms. If you study the general 
formula we stated earlier, it should be apparent to you that the term involving 6x  is 

( )69 69 8 7 6 5 4
3

6!
x−× × × × × × × −  and so the coefficient of 6x  is,  

 
39 8 7 6 5 4

3 2268
6!

× × × × × × = .  

 
 
 
 
 

 
Let us recall our general binomial expansion formula,  
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )2 3 41 2 3 41 1 2 1 2 3
...

2! 3! 4!
n nn n n n nn n n n n n n n n

a bx a na bx a bx a bx a bx bx− − − −− − − − − −
+ = + + + + + +

 
So far, we have only considered this expansion for n a positive integer. What if n is not a 
positive integer? Well, it turns out that the above formula is valid for all rational n 

(positive or negative), provided 
a

x
b

<  (this means that 
a a

x
b b

− < < ). The extra 

condition x a<  is necessary for the series to converge. Otherwise, the formula works in 
exactly the same way.  
 
$5	�����*@! By using the binomial expansion, find a polynomial approximation for 

( ) 11 x
−+ . 

 
Using the formula above, we have,  

"��
�*@� Expand 
6

3
2
x� �−� �

� �
 fully� "��
�*@* What is the coefficient of 

5x  in the expansion of ( )61x − ?�
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( ) ( )1 1 1 1 2 2 1 3 3 1 4 4 1 4 51 2 1 2 3 1 2 3 4 1 2 3 4 5
1 1 1 1 1 1 1 1 ...

2! 3! 4! 5!
x x x x x x

− − − − − − − − − − −− × − − × − × − − × − × − × − − × − × − × − × −+ = + − × × + × × + × × + × × + × × +

 
2 3 4 51 ...x x x x x= − + − + − +  

 
Notice that when n was a positive integer, the binomial expansion formula came to a 
natural end, but when n is not a positive integer, the expansion has no end, it is an infinite 
expansion. Remember to state in your answer that this is only valid for 1x < . 

�
$5	�����*@� By using the binomial expansion, find the first four terms in the 

polynomial approximation for 
( )2

1

2 3x−
. 

 

First of all we write 
( )2

1

2 3x−
 as ( ) 22 3x

−− . Now we use the formula,  

 

( ) ( ) ( ) ( ) ( )2 2 32 2 1 2 2 2 32 3 2 3 4
2 3 2 2 2 3 2 3 2 3

2! 3!
x x x x

− − − − − − − −− × − − × − × −− ≈ + − × × − × + × × − × + × × − ×

 

                2 31 27 27
2

4 16 4
x x x= + + +  

 

This is valid for 3 2x < , i.e. for 
2
3

x < . 

 
$5	�����*@2 By using the binomial expansion, find the first four terms in the 
polynomial approximation for 1 x− . 
 

First we write 1 x−  as ( )
1
21 x− . Then we use the formula,  

 

( ) ( ) ( ) ( )
1 1 1 11 1 2 32 32 2 2 22

1 1 1 1 1
1 1 2

1 2 2 2 2 21 1 1 1 1 1 1 1
2 2! 3!

x x x x
− − −

� � � �� �× − − −� � � �� �
� � � �� �− ≈ + × × − × + × × − × + × × − ×

 
2 31 1 1

2 16 16
x x x= − − −  

 
This is valid for 1x <  
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�������$5�	���������+	
���	�����
���� 
 
We are now able to find a series expansion for ( )n

a bx+  for any rational number n. 
Combining this with our knowledge of partial fractions, we are able to find series 
expansions of some rational functions, as illustrated below. 
 

$5	�����*@�( Find a series expansion for the rational expression ( ) 2

3 5
2 3

x
f x

x x
+=

+ −
. 

 
Using the methods developed in the section on partial fractions, it is possible to write 

( )f x  in the following way, ( ) 1 2
3 1

f x
x x

= +
+ −

 (check!). We can find series expansions 

of ( ) 11
3

3
x

x
−= +

+
 and ( ) 12

2 1
1

x
x

−= −
−

, so adding these two series expansions together 

will give us a series expansion for ( )f x . We have that,  
 

( ) 1 2 3 41 1 1 1 1
3 ...

3 9 27 81 243
x x x x x

−+ = − + − + +  (check!) 

 
This is valid for 3x <  
 
and,  
 

( ) ( )1 2 3 4 2 3 42 1 2 1 ... 2 2 2 2 2 ...x x x x x x x x x
−− = − + − + − = − + − + −       (check!) 

 
This is valid for 1x <  
 
So,  

"��
�*@� By using the binomial expansion, find the first four terms in the 

polynomial approximation for 
( )3

2

2 x−
�

"��
�*@/ By using the binomial expansion, find the first four terms in the 

polynomial approximation for 
1

2 1
2
x+
�

http://www.studyguide.pk
www.studyguide.pk
http://www.studyguide.pk


  

 

160 
 

( ) ( ) ( ) ( )1 1 2 3 4 2 3 41 1 1 1 1
3 2 1 ... 2 2 2 2 2 ...

3 9 27 81 243
f x x x x x x x x x x x

− − � �= + + − = − + − + + + − + − + −� �
� �

 

         2 3 47 19 55 163 587
...

3 9 27 81 243
x x x x= − + − + +  

 
Now, we must state for which values this expansion is valid. The expansion of ( ) 13x

−+  

is valid for 3x < ; the expansion of ( ) 12 1x
−−  is valid for 1x < , so both expansions are 

valid for 1x < , hence the final answer above is valid for 1x < .  

�
 

�
��� �� � � � � �����
��� �� � � � � �����
��� �� � � � � �����
��� �� � � � � �����
 
 
���:�����	���
	�������1�:���1*:���1/ 
 
When we calculate the sine, cosine or tangent of an angle on our calculator, it is not 
usually possible to write down the exact answer, since it will usually be an infinite 
decimal expansion. There are a few special angles, however that have a sine, cosine, and 

tangent that can be expressed exactly, for example tan 1
4
π� �=� �
� �

 

 

Consider a right angled triangle ABC with 
2

CAB
π∠ = . Let us set both of the other two 

angles, ABC∠  and BCA∠  to 
4
π

 (so that at the three interior angles add up to π ). Now 

since ABC CAB∠ = ∠ , we must have that the side AB is equal in length to the side AC, 
let us set this to 1. From Pythagoras, we can say that the length of the hypotenuse, BC is 
equal to 2 . This information is shown in fig. 4.3. 
 
 
 
 
 
 

"��
�*@! Express 
( ) ( )

2

2

1

1 2 1

x x

x x

− −
− −

 as the sum of three partial fractions. Hence, 

expand this expression in ascending powers of x up to and including the term in 3x . 
State the range of values of x for which the full expansion is valid.�
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�

�

�

�
�

�
�

�

Consider the right angled triangle DEF with 
2

FDE
π∠ = , 

3
EFD

π∠ = , 
6

DEF
π∠ =  

(notice that the interior angles to add up to π ). Let us set the length of the hypotenuse, 
EF equal to 2 and the length of the side DF equal to 1. From Pythagoras then, the length 
of the other side, DE must be equal to 3 . This information is shown in fig. 4.4. 
 
 
�
�

�

�
�

�
�
 
�
�

�
�����"��������
����)���
�
����
 
In this section, we will learn some more trig identities. The first of these are stated below, 
but we will not prove it here. It is not difficult to prove (at least for acute angles) and such 
a proof can be found in A-level text books.  
�
���������4����� 

 
 
 
 
 
 
 

$5	�����*@�� Without using a calculator, write down the exact value of 
5

sin
12
π� �

� �
� �

. 

( )sin sin cos cos sinA B A B A B± ≡ ±  

( )cos cos cos sin sinA B A B A B± ≡ �  

4
π

4
π

2

1

1

From this diagram, we can write down exact values for the 

sine, cosine and tangent of 
4
π

. The results are as follows,  

 
1

sin
4 2
π� �=� �
� �

  
1

cos
4 2
π� �=� �
� �

  tan 1
4
π� �=� �
� �

 

fig. 4.3 

A

B

C

3
π

2

1

3

fig. 4.4 

D F

E

6
π

From this diagram, we can write down exact values for the 

sine, cosine and tangent of 
3
π

 and 
6
π

. The results are as 

follows,  
 

3
sin

3 2
π� �=� �
� �

  
1

cos
3 2
π� �=� �
� �

  tan 3
3
π� �=� �
� �

 

 
1

sin
6 2
π� �=� �
� �

  
3

cos
6 2
π� �=� �
� �

  
1

tan
6 3
π� �=� �
� �
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It seems that fig. 4.3 and fig. 4.4  are not much use to us here, since we are interested in 

an angle of 
5
12
π

. These diagrams do, however, allow us to write down exact values of the 

sine of 
4
π

 and 
6
π

, and we notice that 
5

4 6 12
π π π+ = . So, we can use fig. 4.3 and fig. 4.4  

along with the formula for ( )sin A B±  above to solve this problem,  
 

5
sin sin sin cos cos sin

12 4 6 4 6 4 6
π π π π π π π� � � � � � � � � � � �= + = +� � � � � � � � � � � �

� � � � � � � � � � � �
 

 

                                       
1 3 1 1

2 22 2
= × + ×  

 

                                        
3 1 1 3

2 2 2 2 2 2
+= + =  

 
rationalising  

the denominator             
2 6

4
+=  

 
 
 
 
 

 
#��6���4����������	�
�

We have stated the identity ( )sin sin cos cos sinA B A B A B+ ≡ + . From this, we can 

write down an identity for ( )sin 2θ  as follows, 
 

( ) ( )sin 2 sin sin cos cos sinθ θ θ θ θ θ θ= + ≡ ±  
 
                                   2sin cosθ θ= . 
 
So, we have the identity,  

 
 
 
 

Similarly, by using the identity ( )cos cos cos sin sinA B A B A B+ ≡ − , we can derive the 
following cosine double angle formula, 

"��
�*@! Without using a calculator, write down the exact value of cos
6
π� �
� �
� �
�

( )sin 2 2sin cosθ θ θ≡  
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Since 2 2sin 1 cosθ θ≡ − , we can write the above identity as,  
 

( ) ( )2 2cos 2 cos 1 cosθ θ θ= − −  

so, 
 

 
 
 

 
Since 2 2cos 1 sinθ θ≡ − , we can write the above as,  
 

( ) ( )2cos 2 2 1 sin 1θ θ= − −  

so, 
 
 
 
 

So, we now have three different expressions for ( )cos 2θ . 
 

 
We can also derive a double angle formula for tangent, by remembering that 

sin
tan

cos
θθ
θ

≡ . We have,  

 

( ) ( )
( ) 2 2

sin 2 2sin cos
tan 2

cos 2 cos sin
θ θ θθ
θ θ θ

≡ ≡
−

.  

 
Dividing numerator and denominator by 2cos θ  gives,  
 

( )
2

2 2 2

2 2

2sin cos
2 tancostan 2

cos sin 1 tan
cos cos

θ θ
θθθ

θ θ θ
θ θ

≡ ≡
−−

. So, we have the identity,  

 

"��
�*@2�By using the identity ( )sin sin cos cos sinA B A B A B+ ≡ + , write down an 

identity for ( )sin 3θ  in its simplest form (there is more than one acceptable answer to this 

question)�

( ) 2 2cos 2 cos sinθ θ θ≡ −  

( ) 2cos 2 2cos 1θ θ≡ −  

( ) 2cos 2 1 sinθ θ≡ −  
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�

�
�

	�
��������	� 
 
We have the following four identities,  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

We can see that 
2

A Bθ +=  and  
2

A Bϕ −= . Substituting this into (�) gives,  

 

sin sin 2sin cos
2 2

A B A B
A B

+ −� � � �+ ≡ � � � �
� � � �

 as required. 

 
���%����"��������
����)���
�
����
�
We now have a collection of standard trigonometric identities which we can use to solve 
problems and prove further identities. The identities that we have stated so far by no 
means make up a list of all the trigonometric identities that exist. The identities we have 
mentioned so far do enable us, however, to prove many more results. Below is an 
example of this in action. 
 

$5	�����*@�' Prove the identity 
2

2

1 tan
tan

1 cot
θ θ
θ

+ ≡
+

. 

 

( ) 2

2 tan
tan 2

1 tan
θθ
θ

≡
−

 

sin sin 2sin cos
2 2

A B A B
A B

+ −� � � �+ ≡ � � � �
� � � �

 

sin sin 2cos sin
2 2

A B A B
A B

+ −� � � �− ≡ � � � �
� � � �

 

cos cos 2cos cos
2 2

A B A B
A B

+ −� � � �+ ≡ � � � �
� � � �

 

cos cos 2sin sin
2 2

A B A B
A B

+ −� � � �− ≡ − � � � �
� � � �

 

These identities can be proved by using the 
previously stated identities. We will prove the 
first one here, and leave the rest as an exercise. 
They are all proved in a similar way. 
 
We have that  
 

( )sin sin cos cos sinθ ϕ θ ϕ θ ϕ+ ≡ +  
and 
 

( )sin sin cos cos sinθ ϕ θ ϕ θ ϕ− ≡ −  
 
Adding these two equations gives, 
 

( ) ( )sin sin 2sin cosθ ϕ θ ϕ θ ϕ+ + − ≡ …….(�) 
 
If we now let Aθ ϕ+ =  and Bθ ϕ− =  
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As usual, we will work on the more complicated side and make it look like the simpler 
side. We have the identity 2 21 tan secθ θ+ =  and 2 21 cot cosecθ θ+ = , from section 3.2. 
Substituting these into the LHS gives,  
 

2

2

sec sec sin
LHS tan RHS

cosec cosec cos
θ θ θ θ
θ θ θ

= = = = = , as required 

 
$5	�����*@�� Prove the identity 2sin 3 sin 4sin cosθ θ θ θ+ ≡ . 
 
In this example, we will work on the LHS and show that it is the same as the RHS. We 
use the identity ( )sin sin cos cos sinA B A B A B+ ≡ +  to write down an identity for sin 3θ  
(this is test 4.9). We have,  
 

( )sin 2 sin 2 cos cos 2 sinθ θ θ θ θ θ+ ≡ + . 
 
Next, we use the identity ( )sin 2 2sin cosθ θ θ≡  top replace the sin 2θ  term and the 

identity ( ) 2cos 2 2cos 1θ θ≡ −  to replace the cos 2θ  term. (Note that there is more than 

one identity for cos 2θ  to choose from, but since we are trying to make this look 
something like 2sin cosθ θ , this is the only one that will work in this case). Doing this 
gives,  
 

( )2sin 3 2sin cos cos 2cos 1 sinθ θ θ θ θ θ≡ + −  

 
2 2sin 3 2sin cos 2cos sin sin��� θ θ θ θ θ θ� ≡ + −  

 
2sin 3 4sin cos sin��� θ θ θ θ� ≡ −  

 
So, 2sin 3 sin 4sin cosθ θ θ θ+ ≡  as required. 
 

 
 
 
 

 
 
 
 
 

 
�

�
�

"��
�*@�( Prove the identity ( ) ( )sin sin 2cos sinA B A B A B+ − − ≡ �

"��
�*@�� Prove the identity 
sin sin

tan
cos cos 2

A B A B
A B

+ +� �≡ � �+ � �
�
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���%����"��������
����$��	
�����

�
Trigonometric identities are also useful when solving trigonometric equations. Here are 
some examples. 
 
$5	�����*@�* Solve the equation cos 4 cos 0θ θ− =  in the interval 0 θ π≤ ≤ . 
When solving equations of this type, we need to use the factor formula to express the 
LHS as a product of two trigonometric functions. In this example, we use the identity 

cos cos 2sin sin
2 2

A B A B
A B

+ −� � � �− ≡ − � � � �
� � � �

 to write the LHS as, 

 
5 3

cos 4 cos 2sin sin
2 2
θ θθ θ � � � �− = − � � � �

� � � �
. So now we need to solve the equation,  

 
5 3 5 3

2sin sin 0      sin sin 0
2 2 2 2
θ θ θ θ� � � � � � � �− = � =� � � � � � � �

� � � � � � � �
. 

 
We can solve the equation in this form, since the LHS is zero if and only if at least one of 

the terms 
5

sin
2
θ� �

� �
� �

 or 
3

sin
2
θ� �

� �
� �

 are zero.  

 

Setting 
5

sin 0
2
θ� �=� �

� �
 gives the solutions 

5
0,  , 2 , 3 , ...

2
θ π π π= 2 4

  0, , 
5 5
π πθ� =  in 

the specified range. 
 

Setting 
3

sin
2
θ� �

� �
� �

 gives the solutions 
3

0,  , 2 , 3 , ...
2
θ π π π= 2

  0, 
3
πθ� =  in the 

specified range. 
 

So, all together we have the solutions, 
2 2 4

  0, , , 
5 3 5
π π πθ� =  for 0 θ π≤ ≤ . 

 
 
 
 

 
$5	�����*@�� Solve the equation 4cos 2 2cos 3 0θ θ− + =  for 0 2θ π≤ ≤ . 
 
Here, the arguments of the trig functions are different. Our aim is to express this equation 
as an equation in cosθ  by using the identity ( ) 2cos 2 2cos 1θ θ≡ − , as follows. 
 
4cos 2 2cos 3 0θ θ− + =  
 

"��
�*@�' Solve the equation sin 7 sin 3θ θ=  in the interval 0 θ π≤ ≤ �
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( )2  4 2cos 1 2cos 3 0θ θ� − − + =  

 
2  8cos 4 2cos 3 0θ θ� − − + =  

 
2  8cos 2cos 1 0θ θ� − − = . This is now a quadratic equation in cosθ  and it factorises 

as follows,  
 

( )( )28cos 2cos 1 0      4cos 1 2cos 1 0θ θ θ θ− − = ⇔ + − =  
 

Setting 
1

4cos 1 0    cos
4

θ θ+ = � = − , which has solutions 1.823 and 4.460θ θ= =  for 

0 2θ π≤ ≤ . 
 

Setting 
1

2cos 1 0    cos
2

θ θ− = � = , which has solutions 
5

 and 
3 3
π πθ θ= =  for 

0 2θ π≤ ≤ . 
 

So, all together we have the solutions
5

, 1.823, 4.460, 
3 3
π πθ =  for 0 2θ π≤ ≤ . 

 
 
 
 

 
$��	
��������
������������=�����8� 
 
$5	�����*@�/ Solve the equation 3cos 4sin 5x x+ =  for 0 360θ≤ ≤ � . 
 
For equations of this type, we write the LHS in the form ( )sinR x φ+  or ( )cosR x φ+  

(either form will work) where R is a constant greater than zero and φ  is an acute angle. 
Let us solve this example by expressing 3cos 4sinx x+  in the form ( )sinR x φ+ . We 
write,  
 

( )3cos 4sin sinx x R x φ+ ≡ +  
 
                         sin cos cos sinR x R xφ φ≡ +  
 
Comparing coefficients of cos x  yields, 3 sinR φ= ………………………(1) 
 
Comparing coefficients of sin x  yields, 4 cosR φ= ……………………….(2) 
 
Squaring both (1) and (2) and adding gives, 

"��
�*@�� Solve the equation 4cos 3sin 2θ θ=  for 0 2θ π≤ ≤ �

http://www.studyguide.pk
www.studyguide.pk
http://www.studyguide.pk


  

 

168 
 

2 2 2 2 2 2sin cos 3 4R Rφ φ+ = +  
 

( )2 2 2  sin cos 25      5R Rφ φ� + = � =  

Dividing (2) by (1) gives,  
 

sin 4 4
      tan       53.130

cos 5 5
R
R

φ φ φ
φ

= � = � = �  (we take φ  to be the acute angle with a     

 tan of 4/5) 
 
So we have found that, 
 

( ) ( )3cos 4sin 5      5sin 53.130 5      sin 53.130 1x x x x+ = ⇔ + = � + =� �  

 
We can now solve this to give  
 

153.130 sin 1      53.130 90,  180, 270, 360,...x x−+ = � + =� �  
 

   36.9 ,  126.9 ,  216.9 , 306.9x� = � � � �  for 0 360θ≤ ≤ � . 
 
This is a standard method. Once you have seen one example, you can solve other 
examples by following the method through. We just have to write down the identity 

( )cos sin sina x b x R x φ+ ≡ + , expand the RHS, compare coefficients to give two 
equations, square and add these two equations to find R, divide the two equations to find 
φ  (remember we always take the acute angle for φ ), then we can solve the equation 

( )sinR x φ+ .  
 
 
 
 

 

����
�
��� ������� ������ � ��� � ��� �� ����� ��
��� ������� ������ � ��� � ��� �� ����� ��
��� ������� ������ � ��� � ��� �� ����� ��
��� ������� ������ � ��� � ��� �� ����� � �
 
 
9���
�3����:����	�	6��;�#�������
�	��$��	
���� 
 
Differential equations are equations which involve a derivative of a variable. For example, 
d
d
y

x
x

=  is a differential equation. Can you write down an expression for y for this simple 

example? It is not difficult to see that we could have 21
2

y x= . We say that 21
2

y x=  is a 

"��
�*@�* Solve the equation 5sin 12cos 7θ θ+ =  for 0 360θ≤ ≤ � �
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solution of the differential equation 
d
d
y

x
x

= . We can see that 21
12

2
y x= −  is also a 

solution of the differential equation 
d
d
y

x
x

= . In fact, 21
2

y x c= +  is a solution of the 

differential equation 
d
d
y

x
x

=  for any constant, c. So, we can see that differential equations 

do not have unique solutions (unless we are given some extra information). For the 

differential equation above, it was easy to see that 21
2

y x=  is a solution (how did you 

arrive at this answer?). For more complicated cases, we will need to develop a more 
systematic method for solving differential equations. Solving differential equations, in 
general, is a complicated business and there are many methods for solving different types 
of differential equations. Here we will barely scratch the surface and consider very simple, 
so called, separable, first order differential equations.  
 

A differential equation which can be written in the form ( )d
d
y

f x
x

=  for some function 

( )f x  is called a separable (first order) differential equation, and we can solve it by direct 

integration (provided we know how to integrate ( )f x ).  
 

$5	�����*@�! Solve the differential equation 2d
3 2

d
y

x
x

= + . 

 

Integrating both sides with respect to x gives, 2d
d 3 2d

d
y

x x x
x

= +� �  

 
3  2y x x c� = + +  and these are the solutions to the differential equation (one solution 

for each constant, c.  
 

Note, 
d

d d 1d  ( )
d
y

x y y y c
x

= = = +� � � . 

 

$5	�����*@�! Solve the differential equation 
d

sin 2cos 2
d

xy
e x x

x
= − + . 

 
Integrating both sides with respect to x gives, d sin 2cos 2  dxy e x x x= − +� �  

 
  cos sin 2xy e x x c� = + + +  

 
 
 
 

"��
�*@�� Solve the differential equation 
d 1

ln
d

xy
x e

x x
−= + +
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Differential equations of the form 
( )
( )

d
d

f xy
x F y

=  are also separable. We write them in the 

form ( ) ( )d
d
y

F y f x
x

=  and then integrate. 

 

$5	�����*@�� Solve the differential equation 
d
d 1 sin
y x
x y

=
+

. 

 

We write this as ( ) d
1 sin

d
y

y x
x

+ = . Integrating gives, 

( ) 21
1 sin d  d       cos

2
y y x x y y x c+ = � − = +� �  or 22 2cosy y x c− = + . 

 

$5	�����*@�2 Solve the differential equation 
d
d 1
y y
x x

=
+

. 

 

We write this in the form 
1 d 1

d 1
y

y x x
=

+
. Integrating both sides with respect to x gives, 

 

( )1 1
d  d       ln ln 1

1
y x y x c

y x
= � = + +

+� � . We can write lnc K= , to give, 

 
( )( ) ( )ln ln 1 ln ln 1       1y x K K x y K x= + + = + � = + . 

 

$5	�����*@'( Solve the differential equation 
sin d

cos
1 d

x y
x

y x
=

+
. 

 
First, we need to separate the variables, i.e. take all the terms involving x to the LHS and 
all the terms involving y to the RHS,  
 

1 d cos
1 d sin

y x
y x x

=
+

. Integrating both sides with respect to x gives, 

 

( ) ( ) ( )1 cos
d  d       ln 1 ln sin ln sin ln

1 sin
x

y x y x c x K
y x

= � + = + = +
+� �    

 
( )   1 sin       sin 1y K x y K x� + = � = −  
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Note, the integral 
cos

 d
sin

x
x

x�  is of the form 
( )
( )
'

 d
f x

x
f x�  (see section 3.5). 

�
 
 
 
 

 
 
 
 
 

 
)������
�#�������
�	
��� 
 
Most of the time, we write functions down in the form ( )y f x=  with y on the LHS and 
all terms involving x on the RHS. Sometimes, this is not possible, for example we cannot 
write the function ln sin yy x xe− =  in the form ( )y f x= . This is an example of an 
implicit function. Another example of an implicit function, which should seem familiar, is 

2 2 25x y+ = . So how do we differentiate implicit functions?  
 

$5	�����*@'� Given that 2 2 25x y+ = , find 
d
d

y
x

. 

 
Differentiating term by term with respect to x, we get 
 

( ) ( ) ( )2 2d d d
25

d d d
x y

x x x
+ = .  

 

How do we calculate ( )2d
d

y
x

? Recall the chain rule (see section 3.4). We can say that, 

 

( ) ( )2 2d d d d
2

d d d d
y y

y y y
x y x x

= =  

 

So we have, 
d

2 2 0
d
y

x y
x

+ = . Rearranging for 
d
d

y
x

 gives, 

 
d
d
y x
x y

= − . 

 

"��
�*@�/ Solve the differential equation ( )( )d
2 1

d
y

y x
x

= + + �

"��
�*@�! Solve the differential equation 
d
d
y

xy y
x

= − �
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$5	�����*@'' Given that sin cos lnxx y e y+ = + , find 
d
d

y
x

. 

 
Differentiating term by term with respect to x, we get, 
 

( ) ( )d d d d d d d d
sin cos ln       cos cos ln

d d d d d d d d
x xy y

x y e y x y e y
x x x x y x y x

+ = + ⇔ + = +  

 
d 1 d

   cos sin
d d

xy y
x y e

x y x
� − = + . Rearranging for 

d
d

y
x

, 

 
1 d d d 1

cos sin       cos sin
d d d

x xy y y
x e y x e y

y x x x y
� �

− = + � − = +� �
� �

 

 
cos

   
1

sin

xdy x e
dx y

y

−
� =

+
 

�

$5	�����*@'� If 2 2 2 6 5 0x y x y+ − − + = , find 
d
d

y
x

 and 
2

2

d
d

y
x

. 

 
Differentiating term by term with respect to x, we get, 
 

( ) ( ) ( ) ( ) ( ) ( )2 2d d d d d d d d
2 6 5 0

d d d d d d d d
y y

x y x y
x y x x y x x x

+ − − + =  

 
d d

  2 2 2 6 0
d d
y y

x y
x x

� + − − = .  Rearranging for 
d
d

y
x

, 

 
 

( )d d 1
2 6 2 2      

d d 3
y y x

y x
x x y

−
� − = − � =

−
. 

 

Now, to find 
2

2

d
d

y
x

, we need to find 
d 1
d 3
y x
x y
� �−
� �−� �

, i.e. we need to differentiate a quotient. 

To do this, we simply use the quotient rule (section 3.4), but remember, when we 
differentiate a function of y with respect to x, we differentiate the function with respect to 

y and then multiply by 
d
d

y
x

, i.e. ( ) ( )d d d
d d d

y
f y f y

x y x
= . Using the quotient rule, then we 

have,  
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( ) ( ) ( ) ( )

( )2

d d
1 3 3 1

d 1 d d
d 3 3

x y y x
y x x x
x y y

� � � �− − − − −� � � �� �− � � � �=� �− −� �
 

 

( ) ( )
( )2

d
1 3 1d 1 d   

d 3 3

y
y xy x x

x y y

− − − −� �−
� =� �− −� �

.  

 

Now, we have found earlier that 
d 1
d 3
y x
x y

−=
−

. Substituting this in gives,  

 

( ) ( )

( )
( )( ) ( )

( )

2

2

2 3

1
3

3 3 1d 1 3
d 3 3 3

x
y

y y xy x y
x y y y

−
− − − − − −� �− −= =� �− − −� �

. So, we have the answer,  

 

( )( ) ( )
( )

22

32

3 3 1d
d 3

y y xy
x y

− − − −
=

−
. 

 

�
�

�	�	��
����#�������
�	
��� 
 
Recall the material from section 4.2 on parametric equations. Differentiating a curve 
defined parametrically is not difficult, we simple need to recall the chain rule.  
 

$5	�����*@'* A curve is defined parametrically by 
1

1
x

t
=

+
 and 

1
t

y
t

=
−

. 

Calculate 
d
d

y
x

. 

 

From the equation 
1

1
x

t
=

+
, we can see that 

( )2

d 1
d 1

x
t t

= −
+

. From the equation 
1

t
y

t
=

−
,  

 

"��
�*@���Find 
d
d

y
x

 when 3 3 23 sin 8x y y x+ − =  Hint: use the product rule, be 

careful when differentiating y terms�
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using the quotient rule we can see that 
( ) ( )

( ) ( )2 2

1 1d 1
d 1 1

t ty
t t t

− − −
= =

− −
. 

 

From the chain rule, we can say that 
d d d

.
d d d
y y t
x t x

= . We also recall that 
d 1

dd
d

t
xx
t

= , so we 

can write 
d d 1

.
dd d
d

y y
xx t
t

= . 

 

Hence, we have that 
( )

( )

2

2

2

d 1 1 1
1d 11

1

y t
x tt

t

+� �= × = −� �−� �− −
+

. 

 

So the answer is, 
2

d 1
d 1
y t
x t

+� �= −� �−� �
. 

 
$5	�����*@'��A curve is defined parametrically by sinx t=  and cosy t= − . 

Calculate 
d
d

y
x

 and 
2

2

d
d

y
x

. 

 

To calculate 
d
d

y
x

, we follow the same method as example 4.24.  

 

From the equation sinx t= , we can see that 
d

cos
d
x

t
t

= . From the equation cosy t= − , 

we can see that 
d

sin
d
y

t
t

= . 

 

We have, 
d d 1 sin

. tan
dd d cos
d

y y t
t

xx t t
t

= = = . So we have found that 
d

tan
d
y

t
x

= . 

 

Now, ( )
2

2

d d d d
tan

d d d d
y y

t
x x x x

� �= =� �
� �

. 

 

So, ( )
2

2

d d d
tan

d d d
y t

t
x t x

=  
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               2 2d 1
sec sec .

d cos
t

t t
x t

= =  

 

               2

cos cot
sin sin

t t
t t

= = . So we have the answer, 
2

2

d cot
d sin

y t
x t

= . 

 

 
 
)�
���	
����7������	�
�	���	�
���� 
 
In section 3.4, we stated a general rule for differentiating quotients. Unfortunately, there 
is no general rule for integrating quotients, but we can use some of the methods that we 
have studied earlier to make some progress.  
 

We can integrate functions of the form 
( )n

a

bx c+
, and we have learned how to break 

down some more complicated quotients into a sum of fractions of the form 
( )n

a

bx c+
 

(partial fractions), which we can integrate. So, splitting complicated quotients into a sum 
of simpler quotients which we can integrate is the way in which we shall proceed. 
 

$5	�����*@'/�Evaluate ( ) ( )
7 3

d
1 2 3

x
x

x x
+

− +� .  

 
As we have said, there is no general rule that we can use to evaluate this integral directly. 
For problems of this sort, we need to try to break down the integrand into a simpler form 
using partial fractions and hope that we can integrate this simpler form. In example 4.5, 
we found that, 
 

( )( )
7 3 2 3
1 2 3 1 2 3

x
x x x x

+ ≡ +
− + − −

. 

 

So, we can write ( ) ( )
7 3 2 3

d d
1 2 3 1 2 3

x
x x

x x x x
+ = +

− + − −� �  

 

"��
�*@�2 A curve is defined parametrically by 
1

1
x

t
=

+
 and 

1
1

y
t

=
−

. 

Calculate 
d
d

y
x

 and 
2

2

d
d

y
x

.�
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(Remember that, in general, ( )d ln
a a

x bx c K
bx c b

= + +
+� ) 

 

Now, ( ) ( )2 3 3
d 2ln 1 ln 2 3

1 2 3 2
x x x c

x x
+ = − + − +

− −� . 

 

So, ( ) ( ) ( ) ( )7 3 3
d 2ln 1 ln 2 3

1 2 3 2
x

x x x c
x x

+ = − + − +
− +� . 

 

$5	�����*@'!�Evaluate ( )( )
11 19

d
2 3 1

x
x

x x
− −

+ −� . 

 

From example 4.6, we found that ( ) ( )
11 19 1 6

2 3 1 2 3 1
x

x x x x
− − ≡ −

+ − + −
. 

 

So, ( )( ) ( ) ( )11 19 1 6 1
d d ln 2 3 6ln 1

2 3 1 2 3 1 2
x

x x x x c
x x x x
− − = − = + − − +

+ − + −� � . 

 

Hence, we have the solution ( )( ) ( ) ( )11 19 1
d ln 2 3 6ln 1

2 3 1 2
x

x x x c
x x
− − = + − − +

+ −� . 

 
 
 

�
��1 �) �� �#�
��1 �) �� �#�
��1 �) �� �#�
��1 �) �� �# �
 
)�
�����
��� 
 
A vector is a mathematical object which has both magnitude and direction. Vector 
quantities occur commonly in applied maths and physics, for example force, velocity and 
acceleration are examples of vector quantities – they have a numerical value and a 
direction. Physical quantities which are not vectors, i.e. they have a magnitude but no 
direction, are called scalars. Length, area, mass, temperature, energy are examples of 
scalar quantities. We can represent physical vector quantities such as force and velocity 
by straight lines in 2 or 3 dimensions, where the length of the line represents the 
magnitude of the vector and the direction of the line indicates the direction in which the 
vector quantity is acting (we use arrows to represent the direction of the vector). For 
example, a force of 10N acting horizontally to the right can be represented by a straight 

"��
�*@'(  Evaluate 
( )

( )( )2

1
d

3 4 3

x
x

x x

+

− +� � "��
�*@'� Evaluate ( )( )
2

d
5 3

x
x

x x+ −� �
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y 

x
y 

horizontal line of a certain length (for example, we could choose a scale for our diagram 
of 1N = 1cm),  
 
 
 
 
A force of 20N acting horizontally to the right can be represented by a straight horizontal 
line of twice the length of the precious vector (using the same scale as before), 
 
 
 
Consider a 2-dimensional vector joining points O (the origin) and A as shown below. 
 
 
  
 
 
 
 
 
  
 
Suppose that the point A has coordinates ( )1, 2A = , then we can define the vector a (or 

OA
����

) as a column vector, 
1
2
� �

= � �
� �

a . This tells us that the vector a is equivalent to a vector 

of magnitude one pointing in the positive x-direction followed by a vector of magnitude 
two pointing in the positive y-direction, as shown below.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

10N 

20N 

A

O

We denote this vector using the symbol OA
����

 (or OA
����

, 
alternatively we can give it a name, such as OA=a

����
 

(when vectors are denoted in this way, bold letters are 
always used). The vector OA=a

����
 is called the position 

vector of point A. 

a

fig. 4.5 

a

b

c

O

A This is equivalent to saying that if we want to travel from point O 
to point A, we can either travel directly along vector a, or 
alternatively, we can travel along vector b and then travel along 
vector c. Equivalently, starting at the origin, we could travel along 
vector c first and then travel along vector b, this will still take us 
from O to A, as shown in fig. 4.7. 
 
Vector b is a vector of magnitude one in the positive x-direction, 

so it can be written as 
1
0
� �

= � �
� �

b  (the zero indicates that there is no 

component of this vector in the y-direction). Vector c is a vector of 
magnitude two in the positive y-direction, so it can be written as 

0
2
� �

= � �
� �

c  (the zero indicates that there is no component of this 

vector in the x-direction). 

fig. 4.6 

c
a

b

O

A

fig. 4.7 
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-2 
a 

8 

-4 
2a 

2 

4 

-a 

4������ ��
����

�

To add two vectors together, we simply add together the x components of the two vectors 
together and add the y components of the two vectors together. For example with the 
vectors as defined above,  
 

1 0 1 0 1
0 2 0 2 2

+� � � � � � � �
+ = + = = =� � � � � � � �+� � � � � � � �

b c a . 

 
So, as we have already noticed, OA = + = += a b c c b

����
, as illustrated in fig. 4.6 and fig. 

4.7.  
 

We can subtract vectors in a similar way, for example if 
7
1

� �
= � �−� �

a , 
9
4
� �

= � �
� �

b , then 

7 9 2
1 4 5

a b
− −� � � �

− = =� � � �− − −� � � �
. 

 
���
��������	� ��
���6��	���	�	� 
 

Consider the vector 
4
2

� �
= � �−� �

a , as shown in fig. 4.8. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Multiplying a vector by a scalar (a number) maintains the direction of the vector but 
changes the magnitude of the vector, provided the scalar is positive. If we multiply a 
vector by a negative scalar, then we will get a vector which points in the opposite 
direction to the original. For example if we multiply a in fig. 4.8 by 2, we get a vector 
which points in the same direction as a but has twice the magnitude of a. We have 

4 

fig. 4.8 

fig. 4.9 

fig. 4.10 
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4 2 4 8
2 2

2 2 2 4
×� � � � � �

= = =� � � � � �− × − −� � � � � �
a , as shown in fig. 4.9. If we multiply a by -1, we get a 

vector which is equal in magnitude to a but points in the opposite direction. We 

have
4 1 4 4

1
2 1 2 2

− × −� � � � � �
= − × = =� � � � � �− − × −� � � � � �

-a , as shown in fig. 4.10. Multiplying a by -3, for 

example, would produce a vector pointing in the same direction as –a, but with three 
times the magnitude of –a.  
 

$5	�����*@'!�If 
3

1
−� �

= � �
� �

a , 
2
7
� �

= � �
� �

b , 
3
4

� �
= � �−� �

c , calculate 

 
a) + +a b c  b) − +a b c   c) 2 3− +a b c . 
 
 

a) ( )
3 2 3 2

1 7 4 4

− + +� � � �
+ + =� � � �+ + − � �� �

a b c =   b) ( )
3 2 3 2

1 7 4 10

− − + −� � � �
− + =� � � �− + − −� �� �

a b c =  

 

c) 
( )

( )
2 3 2 3 3 1

2 3
2 1 7 3 4 17

× − − + ×� � � �
− + =� � � �× − + × − −� �� �

a b c = . 

�

�
 
�	���
�������	�%��
�� 
 
The magnitude, modulus or length of a vector is calculated using Pythagoras’ Theorem. 
The magnitude of a vector, a, is usually written as a . For example look back at the 
vector a in fig. 4.8. The magnitude of this vector, by Pythagoras is, 
      

 2 24 2 20 2 5= + = =a . 
 

"��
�*@'' Sketch the vectors 
2
3
� �

= � �
� �

a  and 
1

4
−� �

= � �
� �

b  ‘head to tail’ (vectors b and c are drawn 

‘head to tail’ in fig. 4.6.) On this diagram, draw in the vector = +c a b . If 
m

c
n

� �
= � �
� �

, what are the 

values of m and n. Also sketch a similar diagram to show illustrate the calculation =d a - b  (hint: 

( )a - b = a + -b ). If 
p

c
q
� �

= � �
� �

, what are the values of p and q.�
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The magnitude of a vector is always positive. For example, the magnitude of vector –a in 
fig. 4.10 is also 2 5 . 
 
Often we work with vectors in 3-dimensions. To calculate the length of a vector in 3-
dimensions we simply use the familiar 3-dimensional version of Pythagoras’ Theorem. 

For example the length of the vector 

3

1
5

� �
� �= � �
� �−� �

r  is ( )22 23 1 5 35= + + − =r . 

 
�	�	�����%��
��� 
 
It is intuitively obvious what we mean by parallel vectors. Perhaps the only point to note 
is that, for example, vectors a and –a as in fig. 4.8 and 4.10 are parallel even though they 
are travelling in opposite directions (so we cannot define parallel vectors as ‘vectors 
which travel in the same direction’). Vector 2a is also parallel to vector a (and vector –a). 
In fact, any scalar multiple of vector a is parallel to vector a, i.e. vector λa is parallel to 

vector a where λ  is any scalar (positive or negative). For example, the vector 
24
48
� �
� �
� �

 is 

parallel to vector a. 
 
����
����%��
��� 
 
Consider the origin, O and a point in the 2-dimensional plane, P. When working with 2-
dimensional vectors, we often use the symbol i to denote a unit vector in the x-direction, 
that is a ‘horizontal’ vector pointing in the positive x-direction of length one, as shown in 
fig. 4.11. Similarly we use the symbol j 
to denote a ‘vertical’ unit vector 
pointing in the positive y-direction. 
Suppose point P is located (with respect 
to the origin, O) a units in the i direction 
and b units in the j direction. Then we 
can write the vector joining the origin to 
the point P as 
 
OP a b= +i j
����

. 
 
The distance from point P to the origin 
is calculated using Pythagoras, 
 

( )2 2OP a b= +
����

. 

 
We can work out the direction of the vector OP

����
 by using the tan function, 

 

P 
a 

b 

i 

j 

� 

O 

fig. 4.11 
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1tan
a
b

θ − � �= � �
� �

. 

 
 ��
������	
������������� 
 
Let us consider how to write the equation of a straight line in vector form. We are already 
familiar with writing the equation of a straight line in two dimensions in cartesian form, 
y mx c= + , where m is the gradient of the line and c is the intercept on the y-axis, and 
maybe we have worked with cartesian equations of lines in three dimensions, where we 
will have three variables, x, y and z. Notice that, to uniquely specify a straight line in two 
dimensions we need two pieces of information, for example in the cartesian form we 
know the gradient and the intercept. How can we uniquely specify a straight line in three 
dimensions?  When we need to find the vector equation of a line, we always look to find 
two pieces of information: the position 
vector of a point on the line and any 
vector parallel to the line. You will 
always need to remember these two key 
pieces of information when working with 
vector equations of lines. Remember, the 
position vector of a point on the line, say 
point A is the vector which joins the origin 
to the point A. Look at fig. 4.12. The 
vectors in fig. 4.12 may represent vectors 
in two or three dimensions. To specify line 
r, we start at the origin and first move 
along vector a to a point on the line, point A. Once we are at point A, there are many lines 
which pass through that point, so we need another piece of information to uniquely 
determine line r, the extra piece of information we look for is a vector parallel to the line, 
vector b. Once we are at point A, we move in the direction of vector b and we are now 
travelling alone line r. The scalar parameter λ  just stands for the distance which we 
move along the line from point A. The vector equation of line r is  

 
 
 

Where a is the position vector of a point on the line and b is any vector parallel to the line. 
�
$5	�����*@'� Find the vector equation of the line that passes through the points 
( )2,1,3  and ( )5,6,1 .  
 

We have that 

2

1
3

� �
� �
� �
� �
� �

 is the position vector of a point on the line. To find a vector parallel to 

the line we simply subtract the two vectors. A vector parallel to the line is 

O 

r 

a b 

A 

b 

�b 

fig. 4.12 

r λ= +a b  
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5 2 3

6 1 5
1 3 2

� � � � � �
� � � � � �− =� � � � � �
� � � � � �−� � � � � �

. We have therefore that the vector equation of the line is 

2 3

1 5
3 2

λ
� � � �
� � � �= +� � � �
� � � �−� � � �

r . 

 
���%��
����6�
.�����	�
���	��	���%��
������� 
 
Consider the previous example. We can rewrite the vector equation of this line in 
component form as, 
 

2 3           1 5           3 2x y zλ λ λ= + = + = − . 
 
We can rearrange these expressions for �, 
 

2 1 3
                    

3 5 2
x y zλ λ λ− − += = = . 

 
Since the above expressions for � are all equal, we may write, 
 

2 1 3
3 5 2

x y z− − += =  

 
Which is the cartesian form of the line. 
 
$5	�����*@'2 Find the vector form for the line with cartesian equation 3 4y x= − . 
 
As always, we are looking for a point on the line and a vector parallel to the line. One 

obvious point which lies on the line is the y-intercept, which has position vector 
0
4

� �
� �−� �

. 

The gradient of the line is 3. An obvious vector which is parallel to the line (has gradient 

3) is 
1
3
� �
� �
� �

.  The vector equation of the line is therefore 
0 1
4 3

λ� � � �
= +� � � �−� � � �

r . 

 
 
 
 

"��
�*@'� Find the vector equation of the line that passes through the points ( )5,5,1  

and ( )2,1,6− . Also write the equation of the line in cartesian form.  
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In two dimensions, straight lines that are not parallel will meet at a point (they cross). In 
three dimensions, it is rarer to have two lines that meet. In three dimensions, if two lines 
do not cross they are called skew.  
 

$5	�����*@�( Do the lines 1

3 1
4 3

λ� � � �
= +� � � �−� � � �

r  and 2

3 1
2 4

µ� � � �
= +� � � �−� � � �

r  meet? If so, 

find the point of intersection. 
 
First we write each of the lines 1r  and 2r  in component form. 
 
For 1r  we have: 
 

3
4 3

x

y

λ
λ

= +
= −

……………………………………………………………………………(1) 

 
For 2r  we have: 
 

3
2 4

x

y

µ
µ

= +
= − +

………………………………………….………………………………(2) 

 
If the lines are to cross, we need the x value in (1) to equal the x value in (2), ie. We need, 
 
3 3           λ µ λ µ+ = + ⇔ = . 
 
We also need the y value in (1) to equal the y value in (2), ie. We need, 
 
4 3 2 4λ µ− = − + . 
 
But since λ µ=  we can write the above line as, 
 

6
4 3 2 4       

7
λ λ λ µ− = − + � = = . 

 

Substituting the value of � or � into (1) or (2) gives 
6

3
7

x =  and 
4

2
7

y = . Hence the lines 

meet at the point 
6 4

3 ,  2
7 7

� �
� �
� �

. 
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The scalar product (or dot product) of two vectors is calculated as follows: 
 

.

a d

b e a d b e c f

c f

� �� �
� �� �= × + × + ×� �� �
� �� �
� �� �

. 

 
Note, we write a ‘dot’ between the two vectors to denote that we are taking the scalar 

product. Let us do a numerical example. If 

1

4
3

� �
� �= � �
� �−� �

a  and 

2

2
6

� �
� �= � �
� �
� �

b , then 

 

( )
1 2

. 4 . 2 1 2 4 2 3 6 8
3 6

� �� �
� �� �= = × + × + − × = −� �� �
� �� �−� �� �

a b . 

 
We use the following useful formula to calculate the angle between two vectors, θ  as 
shown in fig. 4.13.: 

 
 
 
 

 
Which we can rearrange as: 

 
 
 
 

Notice that if two lines are perpendicular, 90θ = �  and so cos 0θ =  and so 0=a.b . 
 
�
$5	�����*@�� Let us continue from example 4.30. We found that the two lines meet 

at the point 
6 4

3 ,  2
7 7

� �
� �
� �

. What is the angle between the two lines at this point? We use the 

"��
�*@'* Do the lines 1

1 1
4 2

λ� � � �
= +� � � �−� � � �

r  and 2

5 1
2 4

µ� � � �
= +� � � �−� � � �

r  meet? If so, find the 

point of intersection. 
 

b 

a 
� 

180o - � 

fig. 4.13 

cosθ=a.b a b  

cosθ = a.b
a b
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scalar product formula. The directional vector of the line 1r  is 
1
3

� �
� �−� �

 (the vector 
3
4
� �
� �
� �

 is 

the position vector of a point on the line). So, in the scalar product formula, we will have 
1
3

� �
= � �−� �

a  (which comes from line 1r ). Similarly, the directional vector of the line 2r  is 

1
4
� �
� �
� �

, so in the scalar product formula, we will have 
1
4
� �

= � �
� �

b . We find the scalar product 

of these two vectors: 
 

1 1
. . 1 12 11

3 4
� �� �

= = − = −� �� �−� �� �
a b . 

 
We find the length of each of these vectors: 
 

( )221 3 10= + − =a  

 
2 21 4 17= + =b . 

 
So, from the scalar product formula, we have: 
 

11
cos 0.8437      147.5

10 17
θ θ−= = − � = � .  

 
So, the angle between the two vectors is 147.5� . 
 

 
 
 
 
 
 
 
 
 
 

"��
�*@'* Do the lines 1

2 2

0 4
1 1

λ
−� � � �

� � � �= +� � � �
� � � �− −� � � �

r  and 2

3 1

5 3
5 1

µ
� � � �
� � � �= − + −� � � �
� � � �− −� � � �

r  meet? If so, find 

the point of intersection and the angle between the two vectors. 
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A Möbius strip 

)�����	
����	6��
�
�����%���>��?6�����
��� 
 
The picture on the cover shows a Möbius strip (or a Möbius 
band) named after the German mathematician who 
discovered it, August Ferdinand Möbius (1790 – 1868). 
This is a curious object which arises from the study of 
a branch of mathematics called topology. Topology 
is the study of spatial objects such as curves, 
surfaces and the spacetime of general relativity. 
Topology is sometimes informally referred to as 
‘rubber sheet geometry’ because in the study of topology 
spatial objects are considered equivalent under stretching, twisting, 
deformations. Tearing and gluing, however are not allowed. For example, in 
topology a circle and an ellipsoid are equivalent. 
 
The Möbius strip is a curious object because it has only one side. You can understand 
more about the Möbius strip by make one.  
 
Step 1: Take a strip of paper  
Step 2: Hold the paper at each end and twist 180 degrees 
Step 3: Attach the ends of the strip together 
Step 4: You now have a completed Möbius strip 
 

  
 Step 1     Step 2 

 
Step 3       Step 4 
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Cutting the Möbius strip along its length 

The Grand National 

A torus 

Now, to see that the Möbius strip has only one side, take a pencil and draw a line alone 
one side of the Möbius strip, following the side all the way around until you get back to 
the beginning. What do you notice? The Möbius strip has only one side! 
 
Another curious thing happes if you try to 
cut the Möbius strip down the middle. You 
might expect to get two separate Möbius 
strip. What actually happens? What happens 
if you cut the new Möbius strip down the 
middle?  
 
If you have ever been to Blackpool Pleasure 
Beach and rode on the old wooden 
rollercoaster ‘The Grand National’ then you 
have rode around a Möbius strip! The 
wooden track of The Grand National roller 

coaster is actually a Möbius strip. The Grand 
National roller coaster has a track with two 
carriages that race side-by-side. At the start of the 
ride there are two carriages either side of a 
boarding platform. You will notice that at the end 
of the ride, you return to the opposite side of the 
platform to which you 
started but the tracks 
do not cross! 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

 
 
 
 

© Joe Schwartz 2002 www.joyrides.com 

http://www.studyguide.pk
www.studyguide.pk
http://www.studyguide.pk


  

 

188 
 

A Klein bottle 

A Klein bottle 

The Möbius strip is related to other topological objects, such as the torus (donut or bagel 
shape) and the Klein bottle (named after the German mathematician Felix Christian Klein, 
1849 – 1925). The torus and the  
 
Klein bottle can both be cut in certain 
ways as to produce Möbius strips (cutting 
the Klein bottle in half along its length 
produces two Möbius strips). The Klein 
bottle itself is a strange topological object. 
It is a smooth surface that does not end. A 
fly can move from the outside to the inside 
without passing through the body of the 
bottle (this is not true, for example, for a 
sphere) and so the Klein bottle actually 
has no outside and no inside! Physically,  
the Klein bottle can only actually be realised in  
four dimensions since it passes through itself without the  
presence of a hole. 
 
Topology is a complicated area of pure mathematics. Here I give just a brief flavour of 
some of the less technical aspects of the Möbius strip and related objects.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

August Ferdinand Möbius 
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